Tight Bounds on the Simultaneous Estimation of Incompatible Parameters

The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables greatly diminishes the applicability of estimation theory in many prac...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jasminder S. Sidhu, Yingkai Ouyang, Earl T. Campbell, Pieter Kok
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/0f365f6992504cff8ea8c515b8f7ac79
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0f365f6992504cff8ea8c515b8f7ac79
record_format dspace
spelling oai:doaj.org-article:0f365f6992504cff8ea8c515b8f7ac792021-12-02T14:23:21ZTight Bounds on the Simultaneous Estimation of Incompatible Parameters10.1103/PhysRevX.11.0110282160-3308https://doaj.org/article/0f365f6992504cff8ea8c515b8f7ac792021-02-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.011028http://doi.org/10.1103/PhysRevX.11.011028https://doaj.org/toc/2160-3308The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables greatly diminishes the applicability of estimation theory in many practical implementations. The Holevo Cramér-Rao bound (HCRB) provides the most fundamental, simultaneously attainable bound for multiparameter estimation problems. A general closed form for the HCRB is not known given that it requires a complex optimization over multiple variables. In this work, we develop an analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We apply our results to compare the performance of different probe states in magnetic field sensing and characterize the performance of state tomography on the code space of noisy bosonic error-correcting codes. The sensitivity of state tomography on noisy binomial code states can be improved by tuning two coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work provides fundamental insights and makes significant progress toward the estimation of multiple incompatible observables.Jasminder S. SidhuYingkai OuyangEarl T. CampbellPieter KokAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 1, p 011028 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Jasminder S. Sidhu
Yingkai Ouyang
Earl T. Campbell
Pieter Kok
Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
description The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables greatly diminishes the applicability of estimation theory in many practical implementations. The Holevo Cramér-Rao bound (HCRB) provides the most fundamental, simultaneously attainable bound for multiparameter estimation problems. A general closed form for the HCRB is not known given that it requires a complex optimization over multiple variables. In this work, we develop an analytic approach to solving the HCRB for two parameters. Our analysis reveals the role of the HCRB and its interplay with alternative bounds in estimation theory. For more parameters, we generate a lower bound to the HCRB. Our work greatly reduces the complexity of determining the HCRB to solving a set of linear equations that even numerically permits a quadratic speedup over previous state-of-the-art approaches. We apply our results to compare the performance of different probe states in magnetic field sensing and characterize the performance of state tomography on the code space of noisy bosonic error-correcting codes. The sensitivity of state tomography on noisy binomial code states can be improved by tuning two coding parameters that relate to the number of correctable phase and amplitude damping errors. Our work provides fundamental insights and makes significant progress toward the estimation of multiple incompatible observables.
format article
author Jasminder S. Sidhu
Yingkai Ouyang
Earl T. Campbell
Pieter Kok
author_facet Jasminder S. Sidhu
Yingkai Ouyang
Earl T. Campbell
Pieter Kok
author_sort Jasminder S. Sidhu
title Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
title_short Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
title_full Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
title_fullStr Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
title_full_unstemmed Tight Bounds on the Simultaneous Estimation of Incompatible Parameters
title_sort tight bounds on the simultaneous estimation of incompatible parameters
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/0f365f6992504cff8ea8c515b8f7ac79
work_keys_str_mv AT jasminderssidhu tightboundsonthesimultaneousestimationofincompatibleparameters
AT yingkaiouyang tightboundsonthesimultaneousestimationofincompatibleparameters
AT earltcampbell tightboundsonthesimultaneousestimationofincompatibleparameters
AT pieterkok tightboundsonthesimultaneousestimationofincompatibleparameters
_version_ 1718391409810079744