Machine Learning Link Inference of Noisy Delay-Coupled Networks with Optoelectronic Experimental Tests
We devise a machine learning technique to solve the general problem of inferring network links that have time delays using only time series data of the network nodal states. This task has applications in many fields, e.g., from applied physics, data science, and engineering to neuroscience and biolo...
Guardado en:
Autores principales: | Amitava Banerjee, Joseph D. Hart, Rajarshi Roy, Edward Ott |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f450d9779a84d8e80673fbb0ccf9b06 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Gene regulatory network inference from sparsely sampled noisy data
por: Atte Aalto, et al.
Publicado: (2020) -
A new method for inferring hidden markov models from noisy time sequences.
por: David Kelly, et al.
Publicado: (2012) -
Giant piezoresistive effect by optoelectronic coupling in a heterojunction
por: Thanh Nguyen, et al.
Publicado: (2019) -
Machine learning of high dimensional data on a noisy quantum processor
por: Evan Peters, et al.
Publicado: (2021) -
Antiferromagnetic spatial photonic Ising machine through optoelectronic correlation computing
por: Junyi Huang, et al.
Publicado: (2021)