Discovering microbe-disease associations from the literature using a hierarchical long short-term memory network and an ensemble parser model
Abstract With recent advances in biotechnology and sequencing technology, the microbial community has been intensively studied and discovered to be associated with many chronic as well as acute diseases. Even though a tremendous number of studies describing the association between microbes and disea...
Guardado en:
Autores principales: | Yesol Park, Joohong Lee, Heesang Moon, Yong Suk Choi, Mina Rho |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f472126253a466bb775f377a1440755 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
State-of-the-art Italian dependency parsers based on neural and ensemble systems
por: Oronzo Antonelli, et al.
Publicado: (2019) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021) -
Kernel recursive least square tracker and long-short term memory ensemble based battery health prognostic model
por: Muhammad Umair Ali, et al.
Publicado: (2021) -
Ensemble representations reveal distinct neural coding of visual working memory
por: Byung-Il Oh, et al.
Publicado: (2019) -
Grammatical categories determination for Turkish and Kazakh languages based on machine learning algorithms and fulfilling dictionaries of link grammar parser
por: Aigerim Yerimbetova, et al.
Publicado: (2021)