QUBO formulations for training machine learning models
Abstract Training machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like...
Guardado en:
Autores principales: | Prasanna Date, Davis Arthur, Lauren Pusey-Nazzaro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f4a394dc22c4a0abd0c90c1171774d0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fish ecotyping based on machine learning and inferred network analysis of chemical and physical properties
por: Feifei Wei, et al.
Publicado: (2021) -
Adiabatic quantum linear regression
por: Prasanna Date, et al.
Publicado: (2021) -
Impact of train/test sample regimen on performance estimate stability of machine learning in cardiovascular imaging
por: Vikash Singh, et al.
Publicado: (2021) -
Asthma-prone areas modeling using a machine learning model
por: Seyed Vahid Razavi-Termeh, et al.
Publicado: (2021) -
Predictive modeling for peri-implantitis by using machine learning techniques
por: Tomoaki Mameno, et al.
Publicado: (2021)