Improving fake news classification using dependency grammar.
Fake news is a complex problem that leads to different approaches used to identify them. In our paper, we focus on identifying fake news using its content. The used dataset containing fake and real news was pre-processed using syntactic analysis. Dependency grammar methods were used for the sentence...
Guardado en:
Autores principales: | Kitti Nagy, Jozef Kapusta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f5222ec541842eca3ca282f2ed015f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Determinants of individuals' belief in fake news: A scoping review determinants of belief in fake news.
por: Kirill Bryanov, et al.
Publicado: (2021) -
Detection of Fake News Text Classification on COVID-19 Using Deep Learning Approaches
por: Waqas Haider Bangyal, et al.
Publicado: (2021) -
Content-based fake news classification through modified voting ensemble
por: Jose Fabio Ribeiro Bezerra
Publicado: (2021) -
FROM FAKE NEWS TO THE REAL NEWS: THE DEATH OF ATATURK IN PRESS
por: Muhammed Bilal ÇELİK, et al.
Publicado: (2019) -
Fake news threatens a climate literate world
Publicado: (2017)