Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown
Abstract Epidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f5350e19d5d4b4dbc98ab52f66eb2ac |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0f5350e19d5d4b4dbc98ab52f66eb2ac |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0f5350e19d5d4b4dbc98ab52f66eb2ac2021-11-08T10:52:54ZGenomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown10.1038/s41598-021-01022-x2045-2322https://doaj.org/article/0f5350e19d5d4b4dbc98ab52f66eb2ac2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01022-xhttps://doaj.org/toc/2045-2322Abstract Epidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing infection rates and helping the virus evade the host immune system. To understand the changes in viral genomic diversity and molecular epidemiology in Oxford during the first wave of infections in the United Kingdom, we analyzed 563 clinical SARS-CoV-2 samples via whole-genome sequencing using Nanopore MinION sequencing. Large-scale surveillance efforts during viral epidemics are likely to be confounded by the number of independent introductions of the viral strains into a region. To avoid such issues and better understand the selection-based changes occurring in the SARS-CoV-2 genome, we utilized local isolates collected during the UK’s first national lockdown whereby personal interactions, international and national travel were considerably restricted and controlled. We were able to track the short-term evolution of the virus, detect the emergence of several mutations of concern or interest, and capture the viral diversity of the region. Overall, these results demonstrate genomic pathogen surveillance efforts have considerable utility in controlling the local spread of the virus.Altar M. MunisMonique AnderssonAlexander MobbsStephen C. HydeDeborah R. GillNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Altar M. Munis Monique Andersson Alexander Mobbs Stephen C. Hyde Deborah R. Gill Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
description |
Abstract Epidemiological efforts to model the spread of SARS-CoV-2, the virus that causes COVID-19, are crucial to understanding and containing current and future outbreaks and to inform public health responses. Mutations that occur in viral genomes can alter virulence during outbreaks by increasing infection rates and helping the virus evade the host immune system. To understand the changes in viral genomic diversity and molecular epidemiology in Oxford during the first wave of infections in the United Kingdom, we analyzed 563 clinical SARS-CoV-2 samples via whole-genome sequencing using Nanopore MinION sequencing. Large-scale surveillance efforts during viral epidemics are likely to be confounded by the number of independent introductions of the viral strains into a region. To avoid such issues and better understand the selection-based changes occurring in the SARS-CoV-2 genome, we utilized local isolates collected during the UK’s first national lockdown whereby personal interactions, international and national travel were considerably restricted and controlled. We were able to track the short-term evolution of the virus, detect the emergence of several mutations of concern or interest, and capture the viral diversity of the region. Overall, these results demonstrate genomic pathogen surveillance efforts have considerable utility in controlling the local spread of the virus. |
format |
article |
author |
Altar M. Munis Monique Andersson Alexander Mobbs Stephen C. Hyde Deborah R. Gill |
author_facet |
Altar M. Munis Monique Andersson Alexander Mobbs Stephen C. Hyde Deborah R. Gill |
author_sort |
Altar M. Munis |
title |
Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
title_short |
Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
title_full |
Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
title_fullStr |
Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
title_full_unstemmed |
Genomic diversity of SARS-CoV-2 in Oxford during United Kingdom’s first national lockdown |
title_sort |
genomic diversity of sars-cov-2 in oxford during united kingdom’s first national lockdown |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0f5350e19d5d4b4dbc98ab52f66eb2ac |
work_keys_str_mv |
AT altarmmunis genomicdiversityofsarscov2inoxfordduringunitedkingdomsfirstnationallockdown AT moniqueandersson genomicdiversityofsarscov2inoxfordduringunitedkingdomsfirstnationallockdown AT alexandermobbs genomicdiversityofsarscov2inoxfordduringunitedkingdomsfirstnationallockdown AT stephenchyde genomicdiversityofsarscov2inoxfordduringunitedkingdomsfirstnationallockdown AT deborahrgill genomicdiversityofsarscov2inoxfordduringunitedkingdomsfirstnationallockdown |
_version_ |
1718442495648464896 |