Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.

Guardado en:
Detalles Bibliográficos
Autores principales: Nabil Elshafeey, Aikaterini Kotrotsou, Ahmed Hassan, Nancy Elshafei, Islam Hassan, Sara Ahmed, Srishti Abrol, Anand Agarwal, Kamel El Salek, Samuel Bergamaschi, Jay Acharya, Fanny E. Moron, Meng Law, Gregory N. Fuller, Jason T. Huse, Pascal O. Zinn, Rivka R. Colen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.