Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0f699f411a7a415ba931b96a4f10beda |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0f699f411a7a415ba931b96a4f10beda2021-12-02T17:01:59ZMulticenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma10.1038/s41467-019-11007-02041-1723https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda2019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11007-0https://doaj.org/toc/2041-1723MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.Nabil ElshafeeyAikaterini KotrotsouAhmed HassanNancy ElshafeiIslam HassanSara AhmedSrishti AbrolAnand AgarwalKamel El SalekSamuel BergamaschiJay AcharyaFanny E. MoronMeng LawGregory N. FullerJason T. HusePascal O. ZinnRivka R. ColenNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Nabil Elshafeey Aikaterini Kotrotsou Ahmed Hassan Nancy Elshafei Islam Hassan Sara Ahmed Srishti Abrol Anand Agarwal Kamel El Salek Samuel Bergamaschi Jay Acharya Fanny E. Moron Meng Law Gregory N. Fuller Jason T. Huse Pascal O. Zinn Rivka R. Colen Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
description |
MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two. |
format |
article |
author |
Nabil Elshafeey Aikaterini Kotrotsou Ahmed Hassan Nancy Elshafei Islam Hassan Sara Ahmed Srishti Abrol Anand Agarwal Kamel El Salek Samuel Bergamaschi Jay Acharya Fanny E. Moron Meng Law Gregory N. Fuller Jason T. Huse Pascal O. Zinn Rivka R. Colen |
author_facet |
Nabil Elshafeey Aikaterini Kotrotsou Ahmed Hassan Nancy Elshafei Islam Hassan Sara Ahmed Srishti Abrol Anand Agarwal Kamel El Salek Samuel Bergamaschi Jay Acharya Fanny E. Moron Meng Law Gregory N. Fuller Jason T. Huse Pascal O. Zinn Rivka R. Colen |
author_sort |
Nabil Elshafeey |
title |
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
title_short |
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
title_full |
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
title_fullStr |
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
title_full_unstemmed |
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
title_sort |
multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda |
work_keys_str_mv |
AT nabilelshafeey multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT aikaterinikotrotsou multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT ahmedhassan multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT nancyelshafei multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT islamhassan multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT saraahmed multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT srishtiabrol multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT anandagarwal multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT kamelelsalek multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT samuelbergamaschi multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT jayacharya multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT fannyemoron multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT menglaw multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT gregorynfuller multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT jasonthuse multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT pascalozinn multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma AT rivkarcolen multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma |
_version_ |
1718381950961451008 |