Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma

MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.

Guardado en:
Detalles Bibliográficos
Autores principales: Nabil Elshafeey, Aikaterini Kotrotsou, Ahmed Hassan, Nancy Elshafei, Islam Hassan, Sara Ahmed, Srishti Abrol, Anand Agarwal, Kamel El Salek, Samuel Bergamaschi, Jay Acharya, Fanny E. Moron, Meng Law, Gregory N. Fuller, Jason T. Huse, Pascal O. Zinn, Rivka R. Colen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0f699f411a7a415ba931b96a4f10beda
record_format dspace
spelling oai:doaj.org-article:0f699f411a7a415ba931b96a4f10beda2021-12-02T17:01:59ZMulticenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma10.1038/s41467-019-11007-02041-1723https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda2019-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-11007-0https://doaj.org/toc/2041-1723MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.Nabil ElshafeeyAikaterini KotrotsouAhmed HassanNancy ElshafeiIslam HassanSara AhmedSrishti AbrolAnand AgarwalKamel El SalekSamuel BergamaschiJay AcharyaFanny E. MoronMeng LawGregory N. FullerJason T. HusePascal O. ZinnRivka R. ColenNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-9 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Nabil Elshafeey
Aikaterini Kotrotsou
Ahmed Hassan
Nancy Elshafei
Islam Hassan
Sara Ahmed
Srishti Abrol
Anand Agarwal
Kamel El Salek
Samuel Bergamaschi
Jay Acharya
Fanny E. Moron
Meng Law
Gregory N. Fuller
Jason T. Huse
Pascal O. Zinn
Rivka R. Colen
Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
description MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.
format article
author Nabil Elshafeey
Aikaterini Kotrotsou
Ahmed Hassan
Nancy Elshafei
Islam Hassan
Sara Ahmed
Srishti Abrol
Anand Agarwal
Kamel El Salek
Samuel Bergamaschi
Jay Acharya
Fanny E. Moron
Meng Law
Gregory N. Fuller
Jason T. Huse
Pascal O. Zinn
Rivka R. Colen
author_facet Nabil Elshafeey
Aikaterini Kotrotsou
Ahmed Hassan
Nancy Elshafei
Islam Hassan
Sara Ahmed
Srishti Abrol
Anand Agarwal
Kamel El Salek
Samuel Bergamaschi
Jay Acharya
Fanny E. Moron
Meng Law
Gregory N. Fuller
Jason T. Huse
Pascal O. Zinn
Rivka R. Colen
author_sort Nabil Elshafeey
title Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
title_short Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
title_full Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
title_fullStr Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
title_full_unstemmed Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
title_sort multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda
work_keys_str_mv AT nabilelshafeey multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT aikaterinikotrotsou multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT ahmedhassan multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT nancyelshafei multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT islamhassan multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT saraahmed multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT srishtiabrol multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT anandagarwal multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT kamelelsalek multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT samuelbergamaschi multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT jayacharya multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT fannyemoron multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT menglaw multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT gregorynfuller multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT jasonthuse multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT pascalozinn multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
AT rivkarcolen multicenterstudydemonstratesradiomicfeaturesderivedfrommagneticresonanceperfusionimagesidentifypseudoprogressioninglioblastoma
_version_ 1718381950961451008