Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma
MRI scans of glioblastoma patients can be misleading and some patients appear to show features of progressive disease although they respond to treatment. Here, the authors use MRI images of progressive disease or pseudoprogression and build a classifier using machine learning to distinguish the two.
Guardado en:
Autores principales: | Nabil Elshafeey, Aikaterini Kotrotsou, Ahmed Hassan, Nancy Elshafei, Islam Hassan, Sara Ahmed, Srishti Abrol, Anand Agarwal, Kamel El Salek, Samuel Bergamaschi, Jay Acharya, Fanny E. Moron, Meng Law, Gregory N. Fuller, Jason T. Huse, Pascal O. Zinn, Rivka R. Colen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f699f411a7a415ba931b96a4f10beda |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The phenomenon of pseudoprogression in cancer immunotherapy: is everything so unambiguous?
por: Vladislav O. Sarzhevskiy, et al.
Publicado: (2021) -
Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma
por: Bum-Sup Jang, et al.
Publicado: (2018) -
A Case of Pseudoprogression in Hepatocellular Carcinoma Treated With Atezolizumab Plus Bevacizumab
por: Yukinobu Watanabe MD, PhD, et al.
Publicado: (2021) -
Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma
por: Yan Li, et al.
Publicado: (2021) -
A novel volume-age-KPS (VAK) glioblastoma classification identifies a prognostic cognate microRNA-gene signature.
por: Pascal O Zinn, et al.
Publicado: (2012)