Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice

Hepatocellular carcinoma (HCC) is poorly beneficiated by intravenous chemotherapy due to inadequate availability of drugs at the tumor site. We previously demonstrated that human micro-fragmented adipose tissue (MFAT) and its devitalized counterpart (DMFAT) could be effective natural scaffolds to de...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Giulio Alessandri, Augusto Pessina, Rita Paroni, Luisa Bercich, Francesca Paino, Michele Dei Cas, Moris Cadei, Arnaldo Caruso, Marco Schiariti, Francesco Restelli, Offer Zeira, Carlo Tremolada, Nazario Portolani
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0f6baa87087a4237828c5129b3285387
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0f6baa87087a4237828c5129b3285387
record_format dspace
spelling oai:doaj.org-article:0f6baa87087a4237828c5129b32853872021-11-11T15:33:46ZSingle-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice10.3390/cancers132155052072-6694https://doaj.org/article/0f6baa87087a4237828c5129b32853872021-11-01T00:00:00Zhttps://www.mdpi.com/2072-6694/13/21/5505https://doaj.org/toc/2072-6694Hepatocellular carcinoma (HCC) is poorly beneficiated by intravenous chemotherapy due to inadequate availability of drugs at the tumor site. We previously demonstrated that human micro-fragmented adipose tissue (MFAT) and its devitalized counterpart (DMFAT) could be effective natural scaffolds to deliver Paclitaxel (PTX) to tumors in both in vitro and in vivo tests, affecting cancer growth relapse. Here we tested the efficacy of DMFAT-PTX in a well-established HCC in nude mice. MFAT-PTX and DMFAT-PTX preparations were tested for anti-cancer activity in 2D and 3D assays using Hep-3B tumor cells. The efficacy of DMFAT-PTX was evaluated after a single-shot subcutaneous injection near a Hep-3B growing tumor by assessing tumor volumes, apoptosis rate, and drug pharmacokinetics in an in vivo model. Potent antiproliferative activity was seen in both in vitro 2D and 3D tests. Mice treated with DMFAT-PTX (10 mg/kg) produced potent Hep-3B growth inhibition with 33% complete tumor regressions. All treated animals experienced tumor ulceration at the site of DMFAT-PTX injection, which healed spontaneously. Lowering the drug concentration (5 mg/kg) prevented the formation of ulcers, maintaining statistically significant efficacy. Histology revealed a higher number of apoptotic cancer cells intratumorally, suggesting prolonged presence of PTX that was confirmed by the pharmacokinetic analysis. DMFAT may be a potent and valid new tool for local chemotherapy of HCC in an advanced stage of progression, also suggesting potential effectiveness in other human primary inoperable cancers.Giulio AlessandriAugusto PessinaRita ParoniLuisa BercichFrancesca PainoMichele Dei CasMoris CadeiArnaldo CarusoMarco SchiaritiFrancesco RestelliOffer ZeiraCarlo TremoladaNazario PortolaniMDPI AGarticlepaclitaxelmicro-fragmented fat tissuehepatocarcinomadrug deliverynatural scaffoldNeoplasms. Tumors. Oncology. Including cancer and carcinogensRC254-282ENCancers, Vol 13, Iss 5505, p 5505 (2021)
institution DOAJ
collection DOAJ
language EN
topic paclitaxel
micro-fragmented fat tissue
hepatocarcinoma
drug delivery
natural scaffold
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
spellingShingle paclitaxel
micro-fragmented fat tissue
hepatocarcinoma
drug delivery
natural scaffold
Neoplasms. Tumors. Oncology. Including cancer and carcinogens
RC254-282
Giulio Alessandri
Augusto Pessina
Rita Paroni
Luisa Bercich
Francesca Paino
Michele Dei Cas
Moris Cadei
Arnaldo Caruso
Marco Schiariti
Francesco Restelli
Offer Zeira
Carlo Tremolada
Nazario Portolani
Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
description Hepatocellular carcinoma (HCC) is poorly beneficiated by intravenous chemotherapy due to inadequate availability of drugs at the tumor site. We previously demonstrated that human micro-fragmented adipose tissue (MFAT) and its devitalized counterpart (DMFAT) could be effective natural scaffolds to deliver Paclitaxel (PTX) to tumors in both in vitro and in vivo tests, affecting cancer growth relapse. Here we tested the efficacy of DMFAT-PTX in a well-established HCC in nude mice. MFAT-PTX and DMFAT-PTX preparations were tested for anti-cancer activity in 2D and 3D assays using Hep-3B tumor cells. The efficacy of DMFAT-PTX was evaluated after a single-shot subcutaneous injection near a Hep-3B growing tumor by assessing tumor volumes, apoptosis rate, and drug pharmacokinetics in an in vivo model. Potent antiproliferative activity was seen in both in vitro 2D and 3D tests. Mice treated with DMFAT-PTX (10 mg/kg) produced potent Hep-3B growth inhibition with 33% complete tumor regressions. All treated animals experienced tumor ulceration at the site of DMFAT-PTX injection, which healed spontaneously. Lowering the drug concentration (5 mg/kg) prevented the formation of ulcers, maintaining statistically significant efficacy. Histology revealed a higher number of apoptotic cancer cells intratumorally, suggesting prolonged presence of PTX that was confirmed by the pharmacokinetic analysis. DMFAT may be a potent and valid new tool for local chemotherapy of HCC in an advanced stage of progression, also suggesting potential effectiveness in other human primary inoperable cancers.
format article
author Giulio Alessandri
Augusto Pessina
Rita Paroni
Luisa Bercich
Francesca Paino
Michele Dei Cas
Moris Cadei
Arnaldo Caruso
Marco Schiariti
Francesco Restelli
Offer Zeira
Carlo Tremolada
Nazario Portolani
author_facet Giulio Alessandri
Augusto Pessina
Rita Paroni
Luisa Bercich
Francesca Paino
Michele Dei Cas
Moris Cadei
Arnaldo Caruso
Marco Schiariti
Francesco Restelli
Offer Zeira
Carlo Tremolada
Nazario Portolani
author_sort Giulio Alessandri
title Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
title_short Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
title_full Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
title_fullStr Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
title_full_unstemmed Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice
title_sort single-shot local injection of microfragmented fat tissue loaded with paclitaxel induces potent growth inhibition of hepatocellular carcinoma in nude mice
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0f6baa87087a4237828c5129b3285387
work_keys_str_mv AT giulioalessandri singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT augustopessina singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT ritaparoni singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT luisabercich singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT francescapaino singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT micheledeicas singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT moriscadei singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT arnaldocaruso singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT marcoschiariti singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT francescorestelli singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT offerzeira singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT carlotremolada singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
AT nazarioportolani singleshotlocalinjectionofmicrofragmentedfattissueloadedwithpaclitaxelinducespotentgrowthinhibitionofhepatocellularcarcinomainnudemice
_version_ 1718435161291358208