Computational and traveling wave analysis of Tzitzéica and Dodd-Bullough-Mikhailov equations: An exact and analytical study
Computational and travelling wave solutions provide significant improvements in accuracy and characterize novelty of imposed techniques. In this context, computational and travelling wave solutions have been traced out for Tzitzéica and Dodd-Bullough-Mikhailov equations by means of (1/G′)-expansion...
Guardado en:
Autores principales: | Durur Hülya, Yokuş Asıf, Abro Kashif Ali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f89aacd14444e2999463bddfc703077 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Role of shallow water waves generated by modified Camassa-Holm equation: A comparative analysis for traveling wave solutions
por: Yokuş Asıf, et al.
Publicado: (2021) -
On the Johnson–Tzitzeica Theorem, Graph Theory, and Yang–Baxter Equations
por: Florin F. Nichita
Publicado: (2021) -
Some exact wave solutions to a variety of the Schrödinger equation with two nonlinearity laws and conformable derivative
por: Yan Cao, et al.
Publicado: (2021) -
On the exact and numerical solutions to a new (2 + 1)-dimensional Korteweg-de Vries equation with conformable derivative
por: Özkan Yeşim Sağlam, et al.
Publicado: (2021) -
A new approach for Volterra functional integral equations with non-vanishing delays and fractional Bagley-Torvik equation
por: Ghomanjani,Fateme
Publicado: (2021)