Low-Computational-Cost Hybrid FEM-Analytical Induction Machine Model for the Diagnosis of Rotor Eccentricity, Based on Sparse Identification Techniques and Trigonometric Interpolation
Since it is not efficient to physically study many machine failures, models of faulty induction machines (IMs) have attracted a rising interest. These models must be accurate enough to include fault effects and must be computed with relatively low resources to reproduce different fault scenarios. Mo...
Guardado en:
Autores principales: | Carla Terron-Santiago, Javier Martinez-Roman, Ruben Puche-Panadero, Angel Sapena-Bano |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0f98acd325dd4ad8b9caf67cb9f0bc8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multivariate Nonlinear Sparse Mode Decomposition and Its Application in Gear Fault Diagnosis
por: Haiyang Pan, et al.
Publicado: (2021) -
Online Fault Diagnosis for Photovoltaic Arrays Based on Fisher Discrimination Dictionary Learning for Sparse Representation
por: Peng Xi, et al.
Publicado: (2021) -
Broken Rotor Bar Detection in Induction Motors through Contrast Estimation
por: Edna Rocio Ferrucho-Alvarez, et al.
Publicado: (2021) -
BANDWIDTH REDUCTION ON SPARSE MATRICES BY INTRODUCING NEW VARIABLES
por: Glüge,Rainer
Publicado: (2010) -
Building Extraction from Remote Sensing Images with Sparse Token Transformers
por: Keyan Chen, et al.
Publicado: (2021)