Application of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars
Abstract We investigated the use of an Artificial Neural Network (ANN) to predict the Local Bond Stress (LBS) between Ultra-High-Performance Concrete (UHPC) and steel bars, in order to evaluate the accuracy of our LBS equation, proposed by Multiple Linear Regression (MLR). The experimental and numer...
Guardado en:
Autores principales: | Ahad Amini Pishro, Shiquan Zhang, Dengshi Huang, Feng Xiong, WeiYu Li, Qihong Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0fb64eae79c34c038edcc640e0acf70c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inverse characterization of UHPC material based on Hopkinson bar test
por: Mohammad Reza Khosravani
Publicado: (2021) -
Laboratory Tests of Concrete Beams Reinforced with Recycled Steel Fibres and Steel Bars
por: Małgorzata Pająk, et al.
Publicado: (2021) -
An overview of bond behavior of recycled coarse aggregate concrete with steel bar
por: Su Tian, et al.
Publicado: (2021) -
Finite element analysis on the bond behavior of steel bar in salt–frost-damaged recycled coarse aggregate concrete
por: Su Tian, et al.
Publicado: (2021) -
Effect of Low-Level Cyclic Loading on Bond Behavior of a Steel Bar in Concrete with Pre-Existing Damage
por: Chongku Yi, et al.
Publicado: (2021)