NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination.
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:0fd24268ab1c4d9e95f4d96aaa1b710a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:0fd24268ab1c4d9e95f4d96aaa1b710a2021-12-02T19:13:48ZNetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data10.1038/s42003-021-02610-32399-3642https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02610-3https://doaj.org/toc/2399-3642Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination.Alessandro MontemurroViktoria SchusterHelle Rus PovlsenAmalie Kai BentzenVanessa JurtzWilliam D. ChronisterAustin CrinklawSine R. HadrupOle WintherBjoern PetersLeon Eyrich JessenMorten NielsenNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Alessandro Montemurro Viktoria Schuster Helle Rus Povlsen Amalie Kai Bentzen Vanessa Jurtz William D. Chronister Austin Crinklaw Sine R. Hadrup Ole Winther Bjoern Peters Leon Eyrich Jessen Morten Nielsen NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
description |
Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination. |
format |
article |
author |
Alessandro Montemurro Viktoria Schuster Helle Rus Povlsen Amalie Kai Bentzen Vanessa Jurtz William D. Chronister Austin Crinklaw Sine R. Hadrup Ole Winther Bjoern Peters Leon Eyrich Jessen Morten Nielsen |
author_facet |
Alessandro Montemurro Viktoria Schuster Helle Rus Povlsen Amalie Kai Bentzen Vanessa Jurtz William D. Chronister Austin Crinklaw Sine R. Hadrup Ole Winther Bjoern Peters Leon Eyrich Jessen Morten Nielsen |
author_sort |
Alessandro Montemurro |
title |
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
title_short |
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
title_full |
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
title_fullStr |
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
title_full_unstemmed |
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data |
title_sort |
nettcr-2.0 enables accurate prediction of tcr-peptide binding by using paired tcrα and β sequence data |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a |
work_keys_str_mv |
AT alessandromontemurro nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT viktoriaschuster nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT helleruspovlsen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT amaliekaibentzen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT vanessajurtz nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT williamdchronister nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT austincrinklaw nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT sinerhadrup nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT olewinther nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT bjoernpeters nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT leoneyrichjessen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata AT mortennielsen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata |
_version_ |
1718377010793807872 |