NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data

Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination.

Guardado en:
Detalles Bibliográficos
Autores principales: Alessandro Montemurro, Viktoria Schuster, Helle Rus Povlsen, Amalie Kai Bentzen, Vanessa Jurtz, William D. Chronister, Austin Crinklaw, Sine R. Hadrup, Ole Winther, Bjoern Peters, Leon Eyrich Jessen, Morten Nielsen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0fd24268ab1c4d9e95f4d96aaa1b710a
record_format dspace
spelling oai:doaj.org-article:0fd24268ab1c4d9e95f4d96aaa1b710a2021-12-02T19:13:48ZNetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data10.1038/s42003-021-02610-32399-3642https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a2021-09-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02610-3https://doaj.org/toc/2399-3642Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination.Alessandro MontemurroViktoria SchusterHelle Rus PovlsenAmalie Kai BentzenVanessa JurtzWilliam D. ChronisterAustin CrinklawSine R. HadrupOle WintherBjoern PetersLeon Eyrich JessenMorten NielsenNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Alessandro Montemurro
Viktoria Schuster
Helle Rus Povlsen
Amalie Kai Bentzen
Vanessa Jurtz
William D. Chronister
Austin Crinklaw
Sine R. Hadrup
Ole Winther
Bjoern Peters
Leon Eyrich Jessen
Morten Nielsen
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
description Montemurro et al. present NetTCR-2.0, a convolutional neural network-based tool for predicting the interactions between T cell receptors and MHC-peptide complexes. This tool demonstrates that the best predictions are made when CDR3 α or CDR3 β binding data are used in combination.
format article
author Alessandro Montemurro
Viktoria Schuster
Helle Rus Povlsen
Amalie Kai Bentzen
Vanessa Jurtz
William D. Chronister
Austin Crinklaw
Sine R. Hadrup
Ole Winther
Bjoern Peters
Leon Eyrich Jessen
Morten Nielsen
author_facet Alessandro Montemurro
Viktoria Schuster
Helle Rus Povlsen
Amalie Kai Bentzen
Vanessa Jurtz
William D. Chronister
Austin Crinklaw
Sine R. Hadrup
Ole Winther
Bjoern Peters
Leon Eyrich Jessen
Morten Nielsen
author_sort Alessandro Montemurro
title NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
title_short NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
title_full NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
title_fullStr NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
title_full_unstemmed NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
title_sort nettcr-2.0 enables accurate prediction of tcr-peptide binding by using paired tcrα and β sequence data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/0fd24268ab1c4d9e95f4d96aaa1b710a
work_keys_str_mv AT alessandromontemurro nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT viktoriaschuster nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT helleruspovlsen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT amaliekaibentzen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT vanessajurtz nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT williamdchronister nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT austincrinklaw nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT sinerhadrup nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT olewinther nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT bjoernpeters nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT leoneyrichjessen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
AT mortennielsen nettcr20enablesaccuratepredictionoftcrpeptidebindingbyusingpairedtcraandbsequencedata
_version_ 1718377010793807872