Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors

Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. Howeve...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yu Wang, Xintong Chen, Daqi Shen, Miaocheng Zhang, Xi Chen, Xingyu Chen, Weijing Shao, Hong Gu, Jianguang Xu, Ertao Hu, Lei Wang, Rongqing Xu, Yi Tong
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/0fd6b26657ad4a6291ab1ab8602fa034
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:0fd6b26657ad4a6291ab1ab8602fa034
record_format dspace
spelling oai:doaj.org-article:0fd6b26657ad4a6291ab1ab8602fa0342021-11-25T18:30:25ZArtificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors10.3390/nano111128602079-4991https://doaj.org/article/0fd6b26657ad4a6291ab1ab8602fa0342021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2860https://doaj.org/toc/2079-4991Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. However, fabricating a low-power and robust memristor-based artificial neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a single two-dimensional (2D) MXene(V<sub>2</sub>C)-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, originating from the Ag diffusion-based filamentary mechanism. Moreover, our V<sub>2</sub>C-based artificial neurons faithfully achieve multiple neural functions including leaky integration, threshold-driven fire, self-relaxation, and linear strength-modulated spike frequency characteristics. This work demonstrates that three-atom-type MXene (e.g., V<sub>2</sub>C) memristors may provide an efficient method to construct the hardware neuromorphic computing systems.Yu WangXintong ChenDaqi ShenMiaocheng ZhangXi ChenXingyu ChenWeijing ShaoHong GuJianguang XuErtao HuLei WangRongqing XuYi TongMDPI AGarticleMXenememristorthreshold switchingleaky integrate-and-fireartificial neuronChemistryQD1-999ENNanomaterials, Vol 11, Iss 2860, p 2860 (2021)
institution DOAJ
collection DOAJ
language EN
topic MXene
memristor
threshold switching
leaky integrate-and-fire
artificial neuron
Chemistry
QD1-999
spellingShingle MXene
memristor
threshold switching
leaky integrate-and-fire
artificial neuron
Chemistry
QD1-999
Yu Wang
Xintong Chen
Daqi Shen
Miaocheng Zhang
Xi Chen
Xingyu Chen
Weijing Shao
Hong Gu
Jianguang Xu
Ertao Hu
Lei Wang
Rongqing Xu
Yi Tong
Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
description Artificial synapses and neurons are two critical, fundamental bricks for constructing hardware neural networks. Owing to its high-density integration, outstanding nonlinearity, and modulated plasticity, memristors have attracted emerging attention on emulating biological synapses and neurons. However, fabricating a low-power and robust memristor-based artificial neuron without extra electrical components is still a challenge for brain-inspired systems. In this work, we demonstrate a single two-dimensional (2D) MXene(V<sub>2</sub>C)-based threshold switching (TS) memristor to emulate a leaky integrate-and-fire (LIF) neuron without auxiliary circuits, originating from the Ag diffusion-based filamentary mechanism. Moreover, our V<sub>2</sub>C-based artificial neurons faithfully achieve multiple neural functions including leaky integration, threshold-driven fire, self-relaxation, and linear strength-modulated spike frequency characteristics. This work demonstrates that three-atom-type MXene (e.g., V<sub>2</sub>C) memristors may provide an efficient method to construct the hardware neuromorphic computing systems.
format article
author Yu Wang
Xintong Chen
Daqi Shen
Miaocheng Zhang
Xi Chen
Xingyu Chen
Weijing Shao
Hong Gu
Jianguang Xu
Ertao Hu
Lei Wang
Rongqing Xu
Yi Tong
author_facet Yu Wang
Xintong Chen
Daqi Shen
Miaocheng Zhang
Xi Chen
Xingyu Chen
Weijing Shao
Hong Gu
Jianguang Xu
Ertao Hu
Lei Wang
Rongqing Xu
Yi Tong
author_sort Yu Wang
title Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
title_short Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
title_full Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
title_fullStr Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
title_full_unstemmed Artificial Neurons Based on Ag/V<sub>2</sub>C/W Threshold Switching Memristors
title_sort artificial neurons based on ag/v<sub>2</sub>c/w threshold switching memristors
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/0fd6b26657ad4a6291ab1ab8602fa034
work_keys_str_mv AT yuwang artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT xintongchen artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT daqishen artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT miaochengzhang artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT xichen artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT xingyuchen artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT weijingshao artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT honggu artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT jianguangxu artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT ertaohu artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT leiwang artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT rongqingxu artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
AT yitong artificialneuronsbasedonagvsub2subcwthresholdswitchingmemristors
_version_ 1718411058667847680