Dynamic models of stress-smoking responses based on high-frequency sensor data
Abstract Self-reports indicate that stress increases the risk for smoking; however, intensive data from sensors can provide a more nuanced understanding of stress in the moments leading up to and following smoking events. Identifying personalized dynamical models of stress-smoking responses can impr...
Enregistré dans:
Auteurs principaux: | Sahar Hojjatinia, Elyse R. Daly, Timothy Hnat, Syed Monowar Hossain, Santosh Kumar, Constantino M. Lagoa, Inbal Nahum-Shani, Shahin Alan Samiei, Bonnie Spring, David E. Conroy |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/0ff1c740687e4d37a5624e752e6542da |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A randomized controlled trial of a smoking cessation smartphone application with a carbon monoxide checker
par: Katsunori Masaki, et autres
Publié: (2020) -
Does addition of craving management tools in a stop smoking app improve quit rates among adult smokers? Results from BupaQuit pragmatic pilot randomised controlled trial
par: Aleksandra Herbec, et autres
Publié: (2021) -
Wearable radio-frequency sensing of respiratory rate, respiratory volume, and heart rate
par: Pragya Sharma, et autres
Publié: (2020) -
Investigating sources of inaccuracy in wearable optical heart rate sensors
par: Brinnae Bent, et autres
Publié: (2020) -
Harnessing consumer smartphone and wearable sensors for clinical cancer research
par: Carissa A. Low
Publié: (2020)