Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden

<p><span id="page660"/>Zinkgruvanite, ideally Ba<span class="inline-formula"><sub>4</sub></span>Mn<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: F. Cámara, D. Holtstam, N. Jansson, E. Jonsson, A. Karlsson, J. Langhof, J. Majka, A. Zetterqvist
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/101c341065a9441180cc4298a18ca055
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:101c341065a9441180cc4298a18ca055
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Mineralogy
QE351-399.2
spellingShingle Mineralogy
QE351-399.2
F. Cámara
D. Holtstam
N. Jansson
E. Jonsson
E. Jonsson
A. Karlsson
J. Langhof
J. Majka
J. Majka
A. Zetterqvist
Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
description <p><span id="page660"/>Zinkgruvanite, ideally Ba<span class="inline-formula"><sub>4</sub></span>Mn<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="28b8815ddf29031da9a15ec20bc0c62d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00005.svg" width="12pt" height="16pt" src="ejm-33-659-2021-ie00005.png"/></svg:svg></span></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7ab3e60d293e5f6af16705622d6ca4dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00006.svg" width="12pt" height="17pt" src="ejm-33-659-2021-ie00006.png"/></svg:svg></span></span>(Si<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>7</sub>)<sub>2</sub></span>(SO<span class="inline-formula"><sub>4</sub>)<sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>, is a new member of the ericssonite group, found in Ba-rich drill core samples from a sphalerite- and galena- and diopside-rich metatuffite succession from the Zinkgruvan mine, Örebro County, Sweden. Zinkgruvanite is associated with massive baryte, barytocalcite, diopside and minor witherite, cerchiaraite-Al, and sulfide minerals. It occurs as subhedral to euhedral flattened and elongated crystals up to 4 mm. It is almost black and semi-opaque with a dark-brown streak. The lustre is vitreous to sub-adamantine on crystal faces and resinous on fractures. The mineral is brittle with an uneven fracture. VHN<span class="inline-formula"><sub>100</sub>=539</span>, and H<span class="inline-formula"><sub>Mohs</sub></span> <span class="inline-formula">≈</span> 4.5. In thin fragments, it is reddish-black, translucent and optically biaxial (<span class="inline-formula">+</span>), 2<span class="inline-formula"><i>V</i><sub><i>z</i></sub></span> <span class="inline-formula">&gt;</span> 70<span class="inline-formula"><sup>∘</sup></span>. Pleochroism is strong and deep brown-red (<span class="inline-formula"><strong><em>E</em></strong></span> <span class="inline-formula">⊥</span> <span class="inline-formula"><i>{</i>001<i>}</i></span> cleavage) to olive-pale-brown. Chemical point analyses by WDS-EPMA (wavelength-dispersive X-ray spectroscopy electron probe microanalyser) together with iron valencies determined from Mössbauer spectroscopy yielded the empirical formula (based on 26 O<span class="inline-formula">+</span>OH<span class="inline-formula">+</span>F<span class="inline-formula">+</span>Cl anions): (Ba<span class="inline-formula"><sub>4.02</sub></span>Na<span class="inline-formula"><sub>0.03</sub>)<sub>Σ4.05</sub></span>(Mn<span class="inline-formula"><sub>1.79</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">1.56</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4e2657da9bf1a1005c61b46e5a0b16ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00007.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00007.png"/></svg:svg></span></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M34" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.42</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="95e15facba73379041c2b38787c09e66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00008.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00008.png"/></svg:svg></span></span>Mg<span class="inline-formula"><sub>0.14</sub></span>Ca<span class="inline-formula"><sub>0.10</sub></span>Ni<span class="inline-formula"><sub>0.01</sub></span>Zn<span class="inline-formula"><sub>0.01</sub>)<sub>Σ4.03</sub></span>(Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">1.74</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="b794586e145dd404b293762b8d9f995d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00009.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00009.png"/></svg:svg></span></span>Ti<span class="inline-formula"><sub>0.20</sub></span>Al<span class="inline-formula"><sub>0.06</sub>)<sub>Σ2.00</sub></span>Si<span class="inline-formula"><sub>4</sub></span>(S<span class="inline-formula"><sub>1.61</sub></span>Si<span class="inline-formula"><sub>0.32</sub></span>P<span class="inline-formula"><sub>0.07</sub>)<sub>Σ1.99</sub></span>O<span class="inline-formula"><sub>24</sub></span>(OH<span class="inline-formula"><sub>1.63</sub></span>Cl<span class="inline-formula"><sub>0.29</sub></span>F<span class="inline-formula"><sub>0.08</sub>)<sub>Σ2.00</sub></span>. The mineral is triclinic, in space group <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M50" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>P</mi><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">¯</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="e86b7352d082dc86c64765dda8a595db"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00010.svg" width="16pt" height="12pt" src="ejm-33-659-2021-ie00010.png"/></svg:svg></span></span>, with unit-cell parameters <span class="inline-formula"><i>a</i>=5</span>.3982(1) Å, <span class="inline-formula"><i>b</i>=7</span>.0237(1) Å, <span class="inline-formula"><i>c</i>=14</span>.8108(4) Å, <span class="inline-formula"><i>α</i>=</span> 98.256(2)<span class="inline-formula"><sup>∘</sup></span>, <span class="inline-formula"><i>β</i>=</span> 93.379(2)<span class="inline-formula"><sup>∘</sup></span>, <span class="inline-formula"><i>γ</i>=</span> 89.985(2)<span class="inline-formula"><sup>∘</sup></span> and <span class="inline-formula"><i>V</i>=</span> 554.75(2) Å<span class="inline-formula"><sup>3</sup></span> for <span class="inline-formula"><i>Z</i>=1</span>. The eight strongest X-ray powder diffraction lines are the following (<span class="inline-formula"><i>d</i></span> Å (I %; hkl)): 3.508 (70; 103), 2.980(70; 11<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M64" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">4</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="345c80e7f9ff65e352fcb2076ac3394f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00011.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00011.png"/></svg:svg></span></span>), 2.814 (68; 1<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M65" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="daa485d23ee07de0d10cd0e552135347"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00012.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00012.png"/></svg:svg></span></span>2), 2.777 (70; 121), 2.699 (714; 200), 2.680 (68; 20<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M66" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="34b6701d827c435e6b3205503edf756f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00013.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00013.png"/></svg:svg></span></span>), 2.125 (100; 124, 204) and 2.107 (96; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M67" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="3e6250055890766015bb16c2b6a27591"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00014.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00014.png"/></svg:svg></span></span>21). The crystal structure (<span class="inline-formula"><i>R</i><sub>1</sub>=0</span>.0379 for 3204 reflections) is an array of TS (titanium silicate) blocks alternating with intermediate blocks. The TS blocks consist of HOH sheets (H for heteropolyhedral and O for octahedral) parallel to (001). In the O sheet, the Mn<span class="inline-formula"><sup>2+</sup></span>-dominant <span class="inline-formula"><i>M</i><sup>O</sup></span>(1,2,3) sites give ideally Mn<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M71" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="75a030282913f27a2fb5ef5f1e752d05"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00015.svg" width="12pt" height="16pt" src="ejm-33-659-2021-ie00015.png"/></svg:svg></span></span> pfu (per formula unit). In the H sheet, the Fe<span class="inline-formula"><sup>3+</sup></span>-dominant <span class="inline-formula"><i>M</i><sup>H</sup></span> sites and <span class="inline-formula"><i>A</i><sup><i>P</i></sup></span>(1) sites give ideally Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M75" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="bfb3dbd64914dca614119742ca4e8ef0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00016.svg" width="12pt" height="17pt" src="ejm-33-659-2021-ie00016.png"/></svg:svg></span></span>Ba<span class="inline-formula"><sub>2</sub></span> pfu. In the intermediate block, SO<span class="inline-formula"><sub>4</sub></span> oxyanions and 11 coordinated Ba atoms give ideally <span class="inline-formula">2×</span> SO<span class="inline-formula"><sub>4</sub></span>Ba pfu. Zinkgruvanite is related to ericssonite and ferroericssonite in having the same topology and type of linkage of layers in the TS block. Zinkgruvanite is also closely compositionally related to yoshimuraite, Ba<span class="inline-formula"><sub>4</sub></span>Mn<span class="inline-formula"><sub>4</sub></span>Ti<span class="inline-formula"><sub>2</sub></span>(Si<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>7</sub>)<sub>2</sub></span>(PO<span class="inline-formula"><sub>4</sub>)<sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>, via the coupled heterovalent substitution 2 Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M88" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mrow><mn mathvariant="normal">4</mn><mo>+</mo></mrow></msup><mo>+</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="3c898475919aa4ea5288daa2b4a2d501"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00017.svg" width="20pt" height="13pt" src="ejm-33-659-2021-ie00017.png"/></svg:svg></span></span> 2 (PO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M89" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mn mathvariant="normal">4</mn></msub><msup><mo>)</mo><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msup><mo>→</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="36pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="32039fe5ea4263661129399d218c92a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00018.svg" width="36pt" height="16pt" src="ejm-33-659-2021-ie00018.png"/></svg:svg></span></span>2 Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M90" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msup><mo>+</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="58c7ba42b8bb75ee58b01bfeee7f4b14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00019.svg" width="20pt" height="13pt" src="ejm-33-659-2021-ie00019.png"/></svg:svg></span></span> 2 (SO<span class="inline-formula"><sub>4</sub>)<sup>2−</sup></span> but presents a different type of linkage. The new mineral probably formed during a late stage of regional metamorphism of a Ba-enriched, syngenetic protolith, involving locally generated oxidized fluids of high salinity.</p>
format article
author F. Cámara
D. Holtstam
N. Jansson
E. Jonsson
E. Jonsson
A. Karlsson
J. Langhof
J. Majka
J. Majka
A. Zetterqvist
author_facet F. Cámara
D. Holtstam
N. Jansson
E. Jonsson
E. Jonsson
A. Karlsson
J. Langhof
J. Majka
J. Majka
A. Zetterqvist
author_sort F. Cámara
title Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
title_short Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
title_full Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
title_fullStr Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
title_full_unstemmed Zinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden
title_sort zinkgruvanite, ba<sub>4</sub>mn<sup>2+</sup><sub>4</sub>fe<sup>3+</sup><sub>2</sub>(si<sub>2</sub>o<sub>7</sub>)<sub>2</sub>(so<sub>4</sub>)<sub>2</sub>o<sub>2</sub>(oh)<sub>2</sub>, a new ericssonite-group mineral from the zinkgruvan zn-pb-ag-cu deposit, askersund, örebro county, sweden
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/101c341065a9441180cc4298a18ca055
work_keys_str_mv AT fcamara zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT dholtstam zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT njansson zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT ejonsson zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT ejonsson zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT akarlsson zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT jlanghof zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT jmajka zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT jmajka zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
AT azetterqvist zinkgruvanitebasub4submnsup2supsub4subfesup3supsub2subsisub2subosub7subsub2subsosub4subsub2subosub2subohsub2subanewericssonitegroupmineralfromthezinkgruvanznpbagcudepositaskersundorebrocountysweden
_version_ 1718444883662864384
spelling oai:doaj.org-article:101c341065a9441180cc4298a18ca0552021-11-04T11:04:38ZZinkgruvanite, Ba<sub>4</sub>Mn<sup>2+</sup><sub>4</sub>Fe<sup>3+</sup><sub>2</sub>(Si<sub>2</sub>O<sub>7</sub>)<sub>2</sub>(SO<sub>4</sub>)<sub>2</sub>O<sub>2</sub>(OH)<sub>2</sub>, a new ericssonite-group mineral from the Zinkgruvan Zn-Pb-Ag-Cu deposit, Askersund, Örebro County, Sweden10.5194/ejm-33-659-20210935-12211617-4011https://doaj.org/article/101c341065a9441180cc4298a18ca0552021-11-01T00:00:00Zhttps://ejm.copernicus.org/articles/33/659/2021/ejm-33-659-2021.pdfhttps://doaj.org/toc/0935-1221https://doaj.org/toc/1617-4011<p><span id="page660"/>Zinkgruvanite, ideally Ba<span class="inline-formula"><sub>4</sub></span>Mn<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="28b8815ddf29031da9a15ec20bc0c62d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00005.svg" width="12pt" height="16pt" src="ejm-33-659-2021-ie00005.png"/></svg:svg></span></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="7ab3e60d293e5f6af16705622d6ca4dd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00006.svg" width="12pt" height="17pt" src="ejm-33-659-2021-ie00006.png"/></svg:svg></span></span>(Si<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>7</sub>)<sub>2</sub></span>(SO<span class="inline-formula"><sub>4</sub>)<sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>, is a new member of the ericssonite group, found in Ba-rich drill core samples from a sphalerite- and galena- and diopside-rich metatuffite succession from the Zinkgruvan mine, Örebro County, Sweden. Zinkgruvanite is associated with massive baryte, barytocalcite, diopside and minor witherite, cerchiaraite-Al, and sulfide minerals. It occurs as subhedral to euhedral flattened and elongated crystals up to 4 mm. It is almost black and semi-opaque with a dark-brown streak. The lustre is vitreous to sub-adamantine on crystal faces and resinous on fractures. The mineral is brittle with an uneven fracture. VHN<span class="inline-formula"><sub>100</sub>=539</span>, and H<span class="inline-formula"><sub>Mohs</sub></span> <span class="inline-formula">≈</span> 4.5. In thin fragments, it is reddish-black, translucent and optically biaxial (<span class="inline-formula">+</span>), 2<span class="inline-formula"><i>V</i><sub><i>z</i></sub></span> <span class="inline-formula">&gt;</span> 70<span class="inline-formula"><sup>∘</sup></span>. Pleochroism is strong and deep brown-red (<span class="inline-formula"><strong><em>E</em></strong></span> <span class="inline-formula">⊥</span> <span class="inline-formula"><i>{</i>001<i>}</i></span> cleavage) to olive-pale-brown. Chemical point analyses by WDS-EPMA (wavelength-dispersive X-ray spectroscopy electron probe microanalyser) together with iron valencies determined from Mössbauer spectroscopy yielded the empirical formula (based on 26 O<span class="inline-formula">+</span>OH<span class="inline-formula">+</span>F<span class="inline-formula">+</span>Cl anions): (Ba<span class="inline-formula"><sub>4.02</sub></span>Na<span class="inline-formula"><sub>0.03</sub>)<sub>Σ4.05</sub></span>(Mn<span class="inline-formula"><sub>1.79</sub></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M33" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">1.56</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="4e2657da9bf1a1005c61b46e5a0b16ff"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00007.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00007.png"/></svg:svg></span></span>Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M34" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">0.42</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="95e15facba73379041c2b38787c09e66"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00008.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00008.png"/></svg:svg></span></span>Mg<span class="inline-formula"><sub>0.14</sub></span>Ca<span class="inline-formula"><sub>0.10</sub></span>Ni<span class="inline-formula"><sub>0.01</sub></span>Zn<span class="inline-formula"><sub>0.01</sub>)<sub>Σ4.03</sub></span>(Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">1.74</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="18pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="b794586e145dd404b293762b8d9f995d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00009.svg" width="18pt" height="17pt" src="ejm-33-659-2021-ie00009.png"/></svg:svg></span></span>Ti<span class="inline-formula"><sub>0.20</sub></span>Al<span class="inline-formula"><sub>0.06</sub>)<sub>Σ2.00</sub></span>Si<span class="inline-formula"><sub>4</sub></span>(S<span class="inline-formula"><sub>1.61</sub></span>Si<span class="inline-formula"><sub>0.32</sub></span>P<span class="inline-formula"><sub>0.07</sub>)<sub>Σ1.99</sub></span>O<span class="inline-formula"><sub>24</sub></span>(OH<span class="inline-formula"><sub>1.63</sub></span>Cl<span class="inline-formula"><sub>0.29</sub></span>F<span class="inline-formula"><sub>0.08</sub>)<sub>Σ2.00</sub></span>. The mineral is triclinic, in space group <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M50" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>P</mi><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">¯</mo></mover></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="16pt" height="12pt" class="svg-formula" dspmath="mathimg" md5hash="e86b7352d082dc86c64765dda8a595db"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00010.svg" width="16pt" height="12pt" src="ejm-33-659-2021-ie00010.png"/></svg:svg></span></span>, with unit-cell parameters <span class="inline-formula"><i>a</i>=5</span>.3982(1) Å, <span class="inline-formula"><i>b</i>=7</span>.0237(1) Å, <span class="inline-formula"><i>c</i>=14</span>.8108(4) Å, <span class="inline-formula"><i>α</i>=</span> 98.256(2)<span class="inline-formula"><sup>∘</sup></span>, <span class="inline-formula"><i>β</i>=</span> 93.379(2)<span class="inline-formula"><sup>∘</sup></span>, <span class="inline-formula"><i>γ</i>=</span> 89.985(2)<span class="inline-formula"><sup>∘</sup></span> and <span class="inline-formula"><i>V</i>=</span> 554.75(2) Å<span class="inline-formula"><sup>3</sup></span> for <span class="inline-formula"><i>Z</i>=1</span>. The eight strongest X-ray powder diffraction lines are the following (<span class="inline-formula"><i>d</i></span> Å (I %; hkl)): 3.508 (70; 103), 2.980(70; 11<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M64" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">4</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="345c80e7f9ff65e352fcb2076ac3394f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00011.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00011.png"/></svg:svg></span></span>), 2.814 (68; 1<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M65" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="daa485d23ee07de0d10cd0e552135347"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00012.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00012.png"/></svg:svg></span></span>2), 2.777 (70; 121), 2.699 (714; 200), 2.680 (68; 20<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M66" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">1</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="34b6701d827c435e6b3205503edf756f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00013.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00013.png"/></svg:svg></span></span>), 2.125 (100; 124, 204) and 2.107 (96; <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M67" display="inline" overflow="scroll" dspmath="mathml"><mover accent="true"><mn mathvariant="normal">2</mn><mo mathvariant="normal">‾</mo></mover></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="3e6250055890766015bb16c2b6a27591"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00014.svg" width="8pt" height="13pt" src="ejm-33-659-2021-ie00014.png"/></svg:svg></span></span>21). The crystal structure (<span class="inline-formula"><i>R</i><sub>1</sub>=0</span>.0379 for 3204 reflections) is an array of TS (titanium silicate) blocks alternating with intermediate blocks. The TS blocks consist of HOH sheets (H for heteropolyhedral and O for octahedral) parallel to (001). In the O sheet, the Mn<span class="inline-formula"><sup>2+</sup></span>-dominant <span class="inline-formula"><i>M</i><sup>O</sup></span>(1,2,3) sites give ideally Mn<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M71" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">4</mn><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="75a030282913f27a2fb5ef5f1e752d05"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00015.svg" width="12pt" height="16pt" src="ejm-33-659-2021-ie00015.png"/></svg:svg></span></span> pfu (per formula unit). In the H sheet, the Fe<span class="inline-formula"><sup>3+</sup></span>-dominant <span class="inline-formula"><i>M</i><sup>H</sup></span> sites and <span class="inline-formula"><i>A</i><sup><i>P</i></sup></span>(1) sites give ideally Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M75" display="inline" overflow="scroll" dspmath="mathml"><mrow><msubsup><mi/><mn mathvariant="normal">2</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="12pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="bfb3dbd64914dca614119742ca4e8ef0"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00016.svg" width="12pt" height="17pt" src="ejm-33-659-2021-ie00016.png"/></svg:svg></span></span>Ba<span class="inline-formula"><sub>2</sub></span> pfu. In the intermediate block, SO<span class="inline-formula"><sub>4</sub></span> oxyanions and 11 coordinated Ba atoms give ideally <span class="inline-formula">2×</span> SO<span class="inline-formula"><sub>4</sub></span>Ba pfu. Zinkgruvanite is related to ericssonite and ferroericssonite in having the same topology and type of linkage of layers in the TS block. Zinkgruvanite is also closely compositionally related to yoshimuraite, Ba<span class="inline-formula"><sub>4</sub></span>Mn<span class="inline-formula"><sub>4</sub></span>Ti<span class="inline-formula"><sub>2</sub></span>(Si<span class="inline-formula"><sub>2</sub></span>O<span class="inline-formula"><sub>7</sub>)<sub>2</sub></span>(PO<span class="inline-formula"><sub>4</sub>)<sub>2</sub></span>O<span class="inline-formula"><sub>2</sub></span>(OH)<span class="inline-formula"><sub>2</sub></span>, via the coupled heterovalent substitution 2 Ti<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M88" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mrow><mn mathvariant="normal">4</mn><mo>+</mo></mrow></msup><mo>+</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="3c898475919aa4ea5288daa2b4a2d501"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00017.svg" width="20pt" height="13pt" src="ejm-33-659-2021-ie00017.png"/></svg:svg></span></span> 2 (PO<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M89" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mn mathvariant="normal">4</mn></msub><msup><mo>)</mo><mrow><mn mathvariant="normal">3</mn><mo>-</mo></mrow></msup><mo>→</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="36pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="32039fe5ea4263661129399d218c92a5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00018.svg" width="36pt" height="16pt" src="ejm-33-659-2021-ie00018.png"/></svg:svg></span></span>2 Fe<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M90" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mi/><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msup><mo>+</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="13pt" class="svg-formula" dspmath="mathimg" md5hash="58c7ba42b8bb75ee58b01bfeee7f4b14"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-33-659-2021-ie00019.svg" width="20pt" height="13pt" src="ejm-33-659-2021-ie00019.png"/></svg:svg></span></span> 2 (SO<span class="inline-formula"><sub>4</sub>)<sup>2−</sup></span> but presents a different type of linkage. The new mineral probably formed during a late stage of regional metamorphism of a Ba-enriched, syngenetic protolith, involving locally generated oxidized fluids of high salinity.</p>F. CámaraD. HoltstamN. JanssonE. JonssonE. JonssonA. KarlssonJ. LanghofJ. MajkaJ. MajkaA. ZetterqvistCopernicus PublicationsarticleMineralogyQE351-399.2ENEuropean Journal of Mineralogy, Vol 33, Pp 659-673 (2021)