A Haze Prediction Model in Chengdu Based on LSTM
Air pollution with fluidity can influence a large area for a long time and can be harmful to the ecological environment and human health. Haze, one form of air pollution, has been a critical problem since the industrial revolution. Though the actual cause of haze could be various and complicated, in...
Guardado en:
Autores principales: | Xinyi Wu, Zhixin Liu, Lirong Yin, Wenfeng Zheng, Lihong Song, Jiawei Tian, Bo Yang, Shan Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/101f9442d48748438027f90cc94f7f56 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Grey Correlation Analysis of Haze Impact Factor PM2.5
por: Jiayi Xu, et al.
Publicado: (2021) -
Air Pollutant Concentration Prediction Based on a CEEMDAN-FE-BiLSTM Model
por: Xuchu Jiang, et al.
Publicado: (2021) -
Dust Criteria Derived from Long-Term Filter and Online Observations at Gosan in South Korea
por: Xiaona Shang, et al.
Publicado: (2021) -
Spatial-Temporal Variation of Air PM<sub>2.5</sub> and PM<sub>10</sub> within Different Types of Vegetation during Winter in an Urban Riparian Zone of Shanghai
por: Jing Wang, et al.
Publicado: (2021) -
Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model
por: Lirong Yin, et al.
Publicado: (2021)