Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation
Being able to predict the void fraction is essential for a numerical prediction of the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture density and affects two-phase mixture velocity which enable to evaluate the pressure drop of heat exchanger, the mass transfer...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN FR |
Publicado: |
EDP Sciences
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1045644aa5aa4d63ad6295c0dc4b277a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1045644aa5aa4d63ad6295c0dc4b277a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1045644aa5aa4d63ad6295c0dc4b277a2021-11-12T11:44:33ZNumerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation2267-124210.1051/e3sconf/202132101002https://doaj.org/article/1045644aa5aa4d63ad6295c0dc4b277a2021-01-01T00:00:00Zhttps://www.e3s-conferences.org/articles/e3sconf/pdf/2021/97/e3sconf_icchmt2021_01002.pdfhttps://doaj.org/toc/2267-1242Being able to predict the void fraction is essential for a numerical prediction of the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture density and affects two-phase mixture velocity which enable to evaluate the pressure drop of heat exchanger, the mass transfer and heat transfer coefficients. In this study, the flow is modelled by coupling Ansys Fluent with an in-house code library where a CFD porous media approach is implemented. In this code, the two-phase flow has been modelled so far using the Eulerian model. However, this two-phase model requires interaction laws between phases which are not known and/or reliable for a flow within a tube bundle. The aim of this paper is to use the mixture model, for which it is easier to implement suitable correlations for tube bundles. By expressing the relative velocity, as a function of slip, the void fraction model of Feenstra et al. developed for upward cross-flow through horizontal tube bundles is introduced. With this method, physical phenomena that occur in tube bundles are taken into consideration in the mixture model. The developed approach is validated based on the experimental results obtained by Dowlati et al.Dubot ClaireMelot VincentBéghein ClaudineAllery CyrilleBonneau ClémentEDP Sciencesarticlesteam generatorvoid fractionmixture modelporous media approachEnvironmental sciencesGE1-350ENFRE3S Web of Conferences, Vol 321, p 01002 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN FR |
topic |
steam generator void fraction mixture model porous media approach Environmental sciences GE1-350 |
spellingShingle |
steam generator void fraction mixture model porous media approach Environmental sciences GE1-350 Dubot Claire Melot Vincent Béghein Claudine Allery Cyrille Bonneau Clément Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
description |
Being able to predict the void fraction is essential for a numerical prediction of the thermohydraulic behaviour in steam generators. Indeed, it determines two-phase mixture density and affects two-phase mixture velocity which enable to evaluate the pressure drop of heat exchanger, the mass transfer and heat transfer coefficients. In this study, the flow is modelled by coupling Ansys Fluent with an in-house code library where a CFD porous media approach is implemented. In this code, the two-phase flow has been modelled so far using the Eulerian model. However, this two-phase model requires interaction laws between phases which are not known and/or reliable for a flow within a tube bundle. The aim of this paper is to use the mixture model, for which it is easier to implement suitable correlations for tube bundles. By expressing the relative velocity, as a function of slip, the void fraction model of Feenstra et al. developed for upward cross-flow through horizontal tube bundles is introduced. With this method, physical phenomena that occur in tube bundles are taken into consideration in the mixture model. The developed approach is validated based on the experimental results obtained by Dowlati et al. |
format |
article |
author |
Dubot Claire Melot Vincent Béghein Claudine Allery Cyrille Bonneau Clément |
author_facet |
Dubot Claire Melot Vincent Béghein Claudine Allery Cyrille Bonneau Clément |
author_sort |
Dubot Claire |
title |
Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
title_short |
Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
title_full |
Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
title_fullStr |
Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
title_full_unstemmed |
Numerical Prediction of Two-Phase Flow in Tube Bundles with a CFD Porous Media Approach Based on Mixture Model and a Void Fraction Correlation |
title_sort |
numerical prediction of two-phase flow in tube bundles with a cfd porous media approach based on mixture model and a void fraction correlation |
publisher |
EDP Sciences |
publishDate |
2021 |
url |
https://doaj.org/article/1045644aa5aa4d63ad6295c0dc4b277a |
work_keys_str_mv |
AT dubotclaire numericalpredictionoftwophaseflowintubebundleswithacfdporousmediaapproachbasedonmixturemodelandavoidfractioncorrelation AT melotvincent numericalpredictionoftwophaseflowintubebundleswithacfdporousmediaapproachbasedonmixturemodelandavoidfractioncorrelation AT begheinclaudine numericalpredictionoftwophaseflowintubebundleswithacfdporousmediaapproachbasedonmixturemodelandavoidfractioncorrelation AT allerycyrille numericalpredictionoftwophaseflowintubebundleswithacfdporousmediaapproachbasedonmixturemodelandavoidfractioncorrelation AT bonneauclement numericalpredictionoftwophaseflowintubebundleswithacfdporousmediaapproachbasedonmixturemodelandavoidfractioncorrelation |
_version_ |
1718430539481874432 |