Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil
The tip leakage vortex (TLV) has aroused great concern for turbomachine performance, stability and noise generation as well as cavitation erosion. To better understand structures and dynamics of the TLV, large-eddy simulation (LES) is coupled with a homogeneous cavitation model to simulate the cavit...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/104ffcabe4db4c6c91f1be986bb51fc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:104ffcabe4db4c6c91f1be986bb51fc3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:104ffcabe4db4c6c91f1be986bb51fc32021-11-25T18:04:14ZLarge-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil10.3390/jmse91111982077-1312https://doaj.org/article/104ffcabe4db4c6c91f1be986bb51fc32021-10-01T00:00:00Zhttps://www.mdpi.com/2077-1312/9/11/1198https://doaj.org/toc/2077-1312The tip leakage vortex (TLV) has aroused great concern for turbomachine performance, stability and noise generation as well as cavitation erosion. To better understand structures and dynamics of the TLV, large-eddy simulation (LES) is coupled with a homogeneous cavitation model to simulate the cavitation flow around a NACA0009 hydrofoil with a given clearance. The numerical results are validated by comparisons with experimental measurements. The results demonstrate that the present LES can well predict the mean behavior of the TLV. By visualizing the mean streamlines and mean streamwise vorticity, it shows that the TLV dominates the end-wall vortex structures, and that the generation and evolution of the other vortices are found to be closely related to the development of the TLV. In addition, as the TLV moves downstream, it undergoes an interesting progression, i.e., the vortex core radius keeps increasing and the axial velocity of vortex center experiences a conversion from jet-like profile to wake-like profile.Linlin GengDesheng ZhangJian ChenXavier EscalerMDPI AGarticletip leakage vortexlarge-eddy simulationvortex structuresvortex coreaxial velocityNaval architecture. Shipbuilding. Marine engineeringVM1-989OceanographyGC1-1581ENJournal of Marine Science and Engineering, Vol 9, Iss 1198, p 1198 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
tip leakage vortex large-eddy simulation vortex structures vortex core axial velocity Naval architecture. Shipbuilding. Marine engineering VM1-989 Oceanography GC1-1581 |
spellingShingle |
tip leakage vortex large-eddy simulation vortex structures vortex core axial velocity Naval architecture. Shipbuilding. Marine engineering VM1-989 Oceanography GC1-1581 Linlin Geng Desheng Zhang Jian Chen Xavier Escaler Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
description |
The tip leakage vortex (TLV) has aroused great concern for turbomachine performance, stability and noise generation as well as cavitation erosion. To better understand structures and dynamics of the TLV, large-eddy simulation (LES) is coupled with a homogeneous cavitation model to simulate the cavitation flow around a NACA0009 hydrofoil with a given clearance. The numerical results are validated by comparisons with experimental measurements. The results demonstrate that the present LES can well predict the mean behavior of the TLV. By visualizing the mean streamlines and mean streamwise vorticity, it shows that the TLV dominates the end-wall vortex structures, and that the generation and evolution of the other vortices are found to be closely related to the development of the TLV. In addition, as the TLV moves downstream, it undergoes an interesting progression, i.e., the vortex core radius keeps increasing and the axial velocity of vortex center experiences a conversion from jet-like profile to wake-like profile. |
format |
article |
author |
Linlin Geng Desheng Zhang Jian Chen Xavier Escaler |
author_facet |
Linlin Geng Desheng Zhang Jian Chen Xavier Escaler |
author_sort |
Linlin Geng |
title |
Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
title_short |
Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
title_full |
Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
title_fullStr |
Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
title_full_unstemmed |
Large-Eddy Simulation of Cavitating Tip Leakage Vortex Structures and Dynamics around a NACA0009 Hydrofoil |
title_sort |
large-eddy simulation of cavitating tip leakage vortex structures and dynamics around a naca0009 hydrofoil |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/104ffcabe4db4c6c91f1be986bb51fc3 |
work_keys_str_mv |
AT linlingeng largeeddysimulationofcavitatingtipleakagevortexstructuresanddynamicsaroundanaca0009hydrofoil AT deshengzhang largeeddysimulationofcavitatingtipleakagevortexstructuresanddynamicsaroundanaca0009hydrofoil AT jianchen largeeddysimulationofcavitatingtipleakagevortexstructuresanddynamicsaroundanaca0009hydrofoil AT xavierescaler largeeddysimulationofcavitatingtipleakagevortexstructuresanddynamicsaroundanaca0009hydrofoil |
_version_ |
1718411663010430976 |