DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/10613de65b184d2284bbf33d90a76e13 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:10613de65b184d2284bbf33d90a76e13 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:10613de65b184d2284bbf33d90a76e132021-12-02T15:34:19ZDNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization10.1038/s41467-017-02705-82041-1723https://doaj.org/article/10613de65b184d2284bbf33d90a76e132018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02705-8https://doaj.org/toc/2041-1723DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.Youngjun SongSejung KimMichael J. HellerXiaohua HuangNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Youngjun Song Sejung Kim Michael J. Heller Xiaohua Huang DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
description |
DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations. |
format |
article |
author |
Youngjun Song Sejung Kim Michael J. Heller Xiaohua Huang |
author_facet |
Youngjun Song Sejung Kim Michael J. Heller Xiaohua Huang |
author_sort |
Youngjun Song |
title |
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
title_short |
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
title_full |
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
title_fullStr |
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
title_full_unstemmed |
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
title_sort |
dna multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/10613de65b184d2284bbf33d90a76e13 |
work_keys_str_mv |
AT youngjunsong dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization AT sejungkim dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization AT michaeljheller dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization AT xiaohuahuang dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization |
_version_ |
1718386883555229696 |