DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization

DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.

Guardado en:
Detalles Bibliográficos
Autores principales: Youngjun Song, Sejung Kim, Michael J. Heller, Xiaohua Huang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/10613de65b184d2284bbf33d90a76e13
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:10613de65b184d2284bbf33d90a76e13
record_format dspace
spelling oai:doaj.org-article:10613de65b184d2284bbf33d90a76e132021-12-02T15:34:19ZDNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization10.1038/s41467-017-02705-82041-1723https://doaj.org/article/10613de65b184d2284bbf33d90a76e132018-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-02705-8https://doaj.org/toc/2041-1723DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.Youngjun SongSejung KimMichael J. HellerXiaohua HuangNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Youngjun Song
Sejung Kim
Michael J. Heller
Xiaohua Huang
DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
description DNA based technology holds promise for non-volatile memory and computational tasks, yet the relatively slow hybridization kinetics remain a bottleneck. Here, Song et al. have developed an electric field-induced hybridization platform that can speed up multi-bit memory and logic operations.
format article
author Youngjun Song
Sejung Kim
Michael J. Heller
Xiaohua Huang
author_facet Youngjun Song
Sejung Kim
Michael J. Heller
Xiaohua Huang
author_sort Youngjun Song
title DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
title_short DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
title_full DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
title_fullStr DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
title_full_unstemmed DNA multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
title_sort dna multi-bit non-volatile memory and bit-shifting operations using addressable electrode arrays and electric field-induced hybridization
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/10613de65b184d2284bbf33d90a76e13
work_keys_str_mv AT youngjunsong dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization
AT sejungkim dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization
AT michaeljheller dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization
AT xiaohuahuang dnamultibitnonvolatilememoryandbitshiftingoperationsusingaddressableelectrodearraysandelectricfieldinducedhybridization
_version_ 1718386883555229696