Deep learning and citizen science enable automated plant trait predictions from photographs
Abstract Plant functional traits (‘traits’) are essential for assessing biodiversity and ecosystem processes, but cumbersome to measure. To facilitate trait measurements, we test if traits can be predicted through visible morphological features by coupling heterogeneous photographs from citizen scie...
Guardado en:
Autores principales: | Christopher Schiller, Sebastian Schmidtlein, Coline Boonman, Alvaro Moreno-Martínez, Teja Kattenborn |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/107cbdaa3c7241659a83173551fcdcc3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The retrieval of plant functional traits from canopy spectra through RTM-inversions and statistical models are both critically affected by plant phenology
por: Felix Schiefer, et al.
Publicado: (2021) -
Predicting sex from retinal fundus photographs using automated deep learning
por: Edward Korot, et al.
Publicado: (2021) -
Deep learning identification for citizen science surveillance of tiger mosquitoes
por: Balint Armin Pataki, et al.
Publicado: (2021) -
Citizen Science
por: Stefan Wiederkehr
Publicado: (2021) -
Identifying Peripheral Neuropathy in Colour Fundus Photographs Based on Deep Learning
por: Diego R. Cervera, et al.
Publicado: (2021)