Modeling of the Variables that Influence Sugarcane Yield using C5.0 and QUEST Decision Tree Algorithms
Introduction The sugar industry usually gathers huge amounts of information during normal production operations, which is rarely used to study the relative importance of both management and environment on sugarcane yield performance. Yield prediction is a very significant problem of agricultural org...
Guardado en:
Autores principales: | H Zaki Dizaji, H Bahrami, N Monjezi, M. J Sheikhdavoodi |
---|---|
Formato: | article |
Lenguaje: | EN FA |
Publicado: |
Ferdowsi University of Mashhad
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/107e4290b5b743678ba453f3c26ff7e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Network Model for Time Management in Overhaul of Sugarcane Harvester
por: H Zaki Dizaji, et al.
Publicado: (2018) -
Evaluation of Loss Resources during Sugarcane Production Process and Provide Solutions to Reduce Waste
por: H Zaki Dizaji, et al.
Publicado: (2018) -
Identifying and Prioritizing the Effective Parameters on Lack of Timeliness of Operations of Sugarcane Production using Analytical Hierarchy Process (AHP)
por: N Monjezi, et al.
Publicado: (2017) -
Application of Artificial Neural Networks for Predicting the Yield and GHG Emissions of Sugarcane Production
por: S Haroni, et al.
Publicado: (2018) -
Ergonomic Evaluation Posture of Sugarcane Workers using REBA Method
por: N Monjezi
Publicado: (2021)