Leveraging Expert Knowledge for Label Noise Mitigation in Machine Learning
In training-based Machine Learning applications, the training data are frequently labeled by non-experts and expose substantial label noise which greatly alters the training models. In this work, a novel method for reducing the effect of label noise is introduced. The rules are created from expert k...
Guardado en:
Autores principales: | Quoc Nguyen, Tomoaki Shikina, Daichi Teruya, Seiji Hotta, Huy-Dung Han, Hironori Nakajo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/10b06feac2404b61b1fc2aab9d800a26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
REVIEW ON THE ROAD TRAFFIC NOISE ASSESSMENT
por: ALINA PETROVICI, et al.
Publicado: (2016) -
NOISE PREDICTION, CALCULATION AND MAPPING USING SPECIALIZED SOFTWARE
por: ALINA PETROVICI, et al.
Publicado: (2015) -
MEASURING NOISE LEVEL IN THE TEXTILE INDUSTRY
por: CLAUDIA TOMOZEI, et al.
Publicado: (2018) -
Possibilities of Evaluating the Effectiveness of Noise Barriers in Slovakia
por: Alžbeta Pultznerová, et al.
Publicado: (2021) -
Sound Propagation Modelling for Manned and Unmanned Aircraft Noise Assessment and Mitigation: A Review
por: Rohan Kapoor, et al.
Publicado: (2021)