Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces

We know that air-water interfaces can generically inactivate viruses, but the mechanisms behind this observation are unclear. Here the authors use simulations to uncover those mechanisms and find that the electrostatic repulsive free energy of an RNA virus increases by several thousands of kBT as it...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: C. A. Brackley, A. Lips, A. Morozov, W. C. K. Poon, D. Marenduzzo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/10dbd7880438414ba473842e24f2d028
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:10dbd7880438414ba473842e24f2d028
record_format dspace
spelling oai:doaj.org-article:10dbd7880438414ba473842e24f2d0282021-11-28T12:31:15ZMechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces10.1038/s41467-021-27052-72041-1723https://doaj.org/article/10dbd7880438414ba473842e24f2d0282021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-27052-7https://doaj.org/toc/2041-1723We know that air-water interfaces can generically inactivate viruses, but the mechanisms behind this observation are unclear. Here the authors use simulations to uncover those mechanisms and find that the electrostatic repulsive free energy of an RNA virus increases by several thousands of kBT as it approaches an air-water interface, providing a mechanism for viral destabilization which may induce inactivation.C. A. BrackleyA. LipsA. MorozovW. C. K. PoonD. MarenduzzoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-6 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
C. A. Brackley
A. Lips
A. Morozov
W. C. K. Poon
D. Marenduzzo
Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
description We know that air-water interfaces can generically inactivate viruses, but the mechanisms behind this observation are unclear. Here the authors use simulations to uncover those mechanisms and find that the electrostatic repulsive free energy of an RNA virus increases by several thousands of kBT as it approaches an air-water interface, providing a mechanism for viral destabilization which may induce inactivation.
format article
author C. A. Brackley
A. Lips
A. Morozov
W. C. K. Poon
D. Marenduzzo
author_facet C. A. Brackley
A. Lips
A. Morozov
W. C. K. Poon
D. Marenduzzo
author_sort C. A. Brackley
title Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
title_short Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
title_full Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
title_fullStr Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
title_full_unstemmed Mechanisms for destabilisation of RNA viruses at air-water and liquid-liquid interfaces
title_sort mechanisms for destabilisation of rna viruses at air-water and liquid-liquid interfaces
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/10dbd7880438414ba473842e24f2d028
work_keys_str_mv AT cabrackley mechanismsfordestabilisationofrnavirusesatairwaterandliquidliquidinterfaces
AT alips mechanismsfordestabilisationofrnavirusesatairwaterandliquidliquidinterfaces
AT amorozov mechanismsfordestabilisationofrnavirusesatairwaterandliquidliquidinterfaces
AT wckpoon mechanismsfordestabilisationofrnavirusesatairwaterandliquidliquidinterfaces
AT dmarenduzzo mechanismsfordestabilisationofrnavirusesatairwaterandliquidliquidinterfaces
_version_ 1718407874956230656