Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection

Abstract The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180–200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that mult...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Johannes Jacobus Fahrenfort, Anna Grubert, Christian N. L. Olivers, Martin Eimer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/10df2ae668ad437a86a518a4533e52be
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:10df2ae668ad437a86a518a4533e52be
record_format dspace
spelling oai:doaj.org-article:10df2ae668ad437a86a518a4533e52be2021-12-02T15:05:56ZMultivariate EEG analyses support high-resolution tracking of feature-based attentional selection10.1038/s41598-017-01911-02045-2322https://doaj.org/article/10df2ae668ad437a86a518a4533e52be2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01911-0https://doaj.org/toc/2045-2322Abstract The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180–200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that multivariate analyses of raw EEG data provide a much more fine-grained spatial profile of feature-based target selection. When training a pattern classifier to determine target position from EEG, we were able to decode target positions on the vertical midline, which cannot be achieved using standard N2pc methodology. Next, we used a forward encoding model to construct a channel tuning function that describes the continuous relationship between target position and multivariate EEG in an eight-position display. This model can spatially discriminate individual target positions in these displays and is fully invertible, enabling us to construct hypothetical topographic activation maps for target positions that were never used. When tested against the real pattern of neural activity obtained from a different group of subjects, the constructed maps from the forward model turned out statistically indistinguishable, thus providing independent validation of our model. Our findings demonstrate the power of multivariate EEG analysis to track feature-based target selection with high spatial and temporal precision.Johannes Jacobus FahrenfortAnna GrubertChristian N. L. OliversMartin EimerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-15 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Johannes Jacobus Fahrenfort
Anna Grubert
Christian N. L. Olivers
Martin Eimer
Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
description Abstract The primary electrophysiological marker of feature-based selection is the N2pc, a lateralized posterior negativity emerging around 180–200 ms. As it relies on hemispheric differences, its ability to discriminate the locus of focal attention is severely limited. Here we demonstrate that multivariate analyses of raw EEG data provide a much more fine-grained spatial profile of feature-based target selection. When training a pattern classifier to determine target position from EEG, we were able to decode target positions on the vertical midline, which cannot be achieved using standard N2pc methodology. Next, we used a forward encoding model to construct a channel tuning function that describes the continuous relationship between target position and multivariate EEG in an eight-position display. This model can spatially discriminate individual target positions in these displays and is fully invertible, enabling us to construct hypothetical topographic activation maps for target positions that were never used. When tested against the real pattern of neural activity obtained from a different group of subjects, the constructed maps from the forward model turned out statistically indistinguishable, thus providing independent validation of our model. Our findings demonstrate the power of multivariate EEG analysis to track feature-based target selection with high spatial and temporal precision.
format article
author Johannes Jacobus Fahrenfort
Anna Grubert
Christian N. L. Olivers
Martin Eimer
author_facet Johannes Jacobus Fahrenfort
Anna Grubert
Christian N. L. Olivers
Martin Eimer
author_sort Johannes Jacobus Fahrenfort
title Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
title_short Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
title_full Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
title_fullStr Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
title_full_unstemmed Multivariate EEG analyses support high-resolution tracking of feature-based attentional selection
title_sort multivariate eeg analyses support high-resolution tracking of feature-based attentional selection
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/10df2ae668ad437a86a518a4533e52be
work_keys_str_mv AT johannesjacobusfahrenfort multivariateeeganalysessupporthighresolutiontrackingoffeaturebasedattentionalselection
AT annagrubert multivariateeeganalysessupporthighresolutiontrackingoffeaturebasedattentionalselection
AT christiannlolivers multivariateeeganalysessupporthighresolutiontrackingoffeaturebasedattentionalselection
AT martineimer multivariateeeganalysessupporthighresolutiontrackingoffeaturebasedattentionalselection
_version_ 1718388626584240128