trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway

Abstract trans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yusuke Hirata, Miki Takahashi, Yuto Yamada, Ryosuke Matsui, Aya Inoue, Ryo Ashida, Takuya Noguchi, Atsushi Matsuzawa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/10e32ffef03445fa95dcd28b136361ce
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:10e32ffef03445fa95dcd28b136361ce
record_format dspace
spelling oai:doaj.org-article:10e32ffef03445fa95dcd28b136361ce2021-12-02T15:43:08Ztrans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway10.1038/s41598-021-89506-82045-2322https://doaj.org/article/10e32ffef03445fa95dcd28b136361ce2021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89506-8https://doaj.org/toc/2045-2322Abstract trans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslinks (ICLs) induced by cisplatin (CDDP). We previously reported that TFAs promote apoptosis induced by doxorubicin (Dox), a double strand break (DSB)-inducing agent, via a non-canonical apoptotic pathway independent of tumor suppressor p53 and apoptosis signal-regulating kinase (ASK1), a reactive oxygen species (ROS)-responsive kinase. However, here we found that in the case of CDDP-induced apoptosis, EA-mediated pro-apoptotic action was reversed by knockout of either p53 or ASK1, despite no increase in p53 apoptotic activity. Upon CDDP treatment, EA predominantly enhanced ROS generation, ASK1-p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway activation, and ultimately cell death, all of which were suppressed either by co-treatment of the NADPH oxidase (Nox) inhibitor Apocynin, or by knocking out its regulatory protein, receptor-interacting protein 1 (RIP1). These results demonstrate that in response to CDDP ICLs, TFAs promote p53-dependent apoptosis through the enhancement of the Nox-RIP1-ASK1-MAPK pathway activation, providing insight into the diverse pathogenetic mechanisms of TFAs according to the types of DNA damage.Yusuke HirataMiki TakahashiYuto YamadaRyosuke MatsuiAya InoueRyo AshidaTakuya NoguchiAtsushi MatsuzawaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yusuke Hirata
Miki Takahashi
Yuto Yamada
Ryosuke Matsui
Aya Inoue
Ryo Ashida
Takuya Noguchi
Atsushi Matsuzawa
trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
description Abstract trans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslinks (ICLs) induced by cisplatin (CDDP). We previously reported that TFAs promote apoptosis induced by doxorubicin (Dox), a double strand break (DSB)-inducing agent, via a non-canonical apoptotic pathway independent of tumor suppressor p53 and apoptosis signal-regulating kinase (ASK1), a reactive oxygen species (ROS)-responsive kinase. However, here we found that in the case of CDDP-induced apoptosis, EA-mediated pro-apoptotic action was reversed by knockout of either p53 or ASK1, despite no increase in p53 apoptotic activity. Upon CDDP treatment, EA predominantly enhanced ROS generation, ASK1-p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway activation, and ultimately cell death, all of which were suppressed either by co-treatment of the NADPH oxidase (Nox) inhibitor Apocynin, or by knocking out its regulatory protein, receptor-interacting protein 1 (RIP1). These results demonstrate that in response to CDDP ICLs, TFAs promote p53-dependent apoptosis through the enhancement of the Nox-RIP1-ASK1-MAPK pathway activation, providing insight into the diverse pathogenetic mechanisms of TFAs according to the types of DNA damage.
format article
author Yusuke Hirata
Miki Takahashi
Yuto Yamada
Ryosuke Matsui
Aya Inoue
Ryo Ashida
Takuya Noguchi
Atsushi Matsuzawa
author_facet Yusuke Hirata
Miki Takahashi
Yuto Yamada
Ryosuke Matsui
Aya Inoue
Ryo Ashida
Takuya Noguchi
Atsushi Matsuzawa
author_sort Yusuke Hirata
title trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
title_short trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
title_full trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
title_fullStr trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
title_full_unstemmed trans-Fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced DNA interstrand crosslinks via the Nox-RIP1-ASK1-MAPK pathway
title_sort trans-fatty acids promote p53-dependent apoptosis triggered by cisplatin-induced dna interstrand crosslinks via the nox-rip1-ask1-mapk pathway
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/10e32ffef03445fa95dcd28b136361ce
work_keys_str_mv AT yusukehirata transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT mikitakahashi transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT yutoyamada transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT ryosukematsui transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT ayainoue transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT ryoashida transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT takuyanoguchi transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
AT atsushimatsuzawa transfattyacidspromotep53dependentapoptosistriggeredbycisplatininduceddnainterstrandcrosslinksviathenoxrip1ask1mapkpathway
_version_ 1718385793005780992