Improved Classification Models to Distinguish Natural from Anthropic Oil Slicks in the Gulf of Mexico: Seasonality and Radarsat-2 Beam Mode Effects under a Machine Learning Approach
Distinguishing between natural and anthropic oil slicks is a challenging task, especially in the Gulf of Mexico, where these events can be simultaneously observed and recognized as seeps or spills. In this study, a powerful data analysis provided by machine learning (ML) methods was employed to deve...
Guardado en:
Autores principales: | Ítalo de Oliveira Matias, Patrícia Carneiro Genovez, Sarah Barrón Torres, Francisco Fábio de Araújo Ponte, Anderson José Silva de Oliveira, Fernando Pellon de Miranda, Gil Márcio Avellino |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/10e960cf8b374cba9e7883325556fc1d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Potentiels et limites des traces (géo)numériques dans l’analyse des mobilités : l’exemple des données de la plateforme de covoiturage BlaBlaCar
por: Boris Mericskay
Publicado: (2019) -
L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
por: Matías Ernesto Barber, et al.
Publicado: (2021) -
Anaerobic Degradation of Non-Methane Alkanes by “<italic toggle="yes">Candidatus</italic> Methanoliparia” in Hydrocarbon Seeps of the Gulf of Mexico
por: Rafael Laso-Pérez, et al.
Publicado: (2019) -
Expansion de l'agglomération de Lima et différenciation de l’espace résidentiel : analyse exploratoire d’un corpus de données diversifié
por: Marie Piron, et al.
Publicado: (2015) -
Radar imaging complex with SAR and ASR for aerospace vechicle
por: Volodimir Pavlikov, et al.
Publicado: (2021)