Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis.
<h4>Background</h4>Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.<h4>Methodology/princ...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/10f983a41a9b4ec89f47aba5d50985ec |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:10f983a41a9b4ec89f47aba5d50985ec |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:10f983a41a9b4ec89f47aba5d50985ec2021-11-18T07:04:13ZExpression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis.1932-620310.1371/journal.pone.0044991https://doaj.org/article/10f983a41a9b4ec89f47aba5d50985ec2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23028727/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.<h4>Methodology/principal findings</h4>In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.<h4>Conclusions/significance</h4>In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour.Giuseppe MameliLuciana PoddigheAlessandra MeiElena UleriStefano SotgiuCaterina SerraRoberto ManettiAntonina DoleiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 9, p e44991 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Giuseppe Mameli Luciana Poddighe Alessandra Mei Elena Uleri Stefano Sotgiu Caterina Serra Roberto Manetti Antonina Dolei Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
description |
<h4>Background</h4>Proposed co-factors triggering the pathogenesis of multiple sclerosis (MS) are the Epstein Barr virus (EBV), and the potentially neuropathogenic MSRV (MS-associated retrovirus) and syncytin-1, of the W family of human endogenous retroviruses.<h4>Methodology/principal findings</h4>In search of links, the expression of HERV-W/MSRV/syncytin-1, with/without exposure to EBV or to EBV glycoprotein350 (EBVgp350), was studied on peripheral blood mononuclear cells (PBMC) from healthy volunteers and MS patients, and on astrocytes, by discriminatory env-specific RT-PCR assays, and by flow cytometry. Basal expression of HERV-W/MSRV/syncytin-1 occurs in astrocytes and in monocytes, NK, and B, but not in T cells. This uneven expression is amplified in untreated MS patients, and dramatically reduced during therapy. In astrocytes, EBVgp350 stimulates the expression of HERV-W/MSRV/syncytin-1, with requirement of the NF-κB pathway. In EBVgp350-treated PBMC, MSRVenv and syncytin-1 transcription is activated in B cells and monocytes, but not in T cells, nor in the highly expressing NK cells. The latter cells, but not the T cells, are activated by proinflammatory cytokines.<h4>Conclusions/significance</h4>In vitro EBV activates the potentially immunopathogenic and neuropathogenic HERV-W/MSRV/syncytin-1, in cells deriving from blood and brain. In vivo, pathogenic outcomes would depend on abnormal situations, as in late EBV primary infection, that is often symptomatic, or/and in the presence of particular host genetic backgrounds. In the blood, HERV-Wenv activation might induce immunopathogenic phenomena linked to its superantigenic properties. In the brain, toxic mechanisms against oligodendrocytes could be established, inducing inflammation, demyelination and axonal damage. Local stimulation by proinflammatory cytokines and other factors might activate further HERV-Ws, contributing to the neuropathogenity. In MS pathogenesis, a possible model could include EBV as initial trigger of future MS, years later, and HERV-W/MSRV/syncytin-1 as actual contributor to MS pathogenicity, in striking parallelism with disease behaviour. |
format |
article |
author |
Giuseppe Mameli Luciana Poddighe Alessandra Mei Elena Uleri Stefano Sotgiu Caterina Serra Roberto Manetti Antonina Dolei |
author_facet |
Giuseppe Mameli Luciana Poddighe Alessandra Mei Elena Uleri Stefano Sotgiu Caterina Serra Roberto Manetti Antonina Dolei |
author_sort |
Giuseppe Mameli |
title |
Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
title_short |
Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
title_full |
Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
title_fullStr |
Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
title_full_unstemmed |
Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. |
title_sort |
expression and activation by epstein barr virus of human endogenous retroviruses-w in blood cells and astrocytes: inference for multiple sclerosis. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/10f983a41a9b4ec89f47aba5d50985ec |
work_keys_str_mv |
AT giuseppemameli expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT lucianapoddighe expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT alessandramei expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT elenauleri expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT stefanosotgiu expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT caterinaserra expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT robertomanetti expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis AT antoninadolei expressionandactivationbyepsteinbarrvirusofhumanendogenousretroviruseswinbloodcellsandastrocytesinferenceformultiplesclerosis |
_version_ |
1718423961034817536 |