Crosslinking of fibrous hydrogels
Unlike synthetic hydrogels, biological gels are made of fibrous networks which give rise to unique properties, such as high porosity and mechanical responsiveness. Here the authors use polyisocyanide-based gels and selectively crosslink inside the bundles to lock the fibrous network and thus control...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/10fdb96c48244c9eb819803f969e7f50 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Unlike synthetic hydrogels, biological gels are made of fibrous networks which give rise to unique properties, such as high porosity and mechanical responsiveness. Here the authors use polyisocyanide-based gels and selectively crosslink inside the bundles to lock the fibrous network and thus control the architecture and the mechanics. |
---|