GourmetNet: Food Segmentation Using Multi-Scale Waterfall Features with Spatial and Channel Attention
We propose GourmetNet, a single-pass, end-to-end trainable network for food segmentation that achieves state-of-the-art performance. Food segmentation is an important problem as the first step for nutrition monitoring, food volume and calorie estimation. Our novel architecture incorporates both chan...
Guardado en:
Autores principales: | Udit Sharma, Bruno Artacho, Andreas Savakis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1115306637554b4f9acc4faeacaeaada |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Synergistic Attention for Ship Instance Segmentation in SAR Images
por: Danpei Zhao, et al.
Publicado: (2021) -
Attention-Guided deep atrous-residual U-Net architecture for automated gland segmentation in colon histopathology images
por: Manju Dabass, et al.
Publicado: (2021) -
Memory-Augmented Transformer for Remote Sensing Image Semantic Segmentation
por: Xin Zhao, et al.
Publicado: (2021) -
Road crack segmentation using an attention residual U-Net with generative adversarial
por: Xing Hu, et al.
Publicado: (2021) -
SGA-Net: Self-Constructing Graph Attention Neural Network for Semantic Segmentation of Remote Sensing Images
por: Wenjie Zi, et al.
Publicado: (2021)