PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/111b029010554336953c7cbdd3a29d8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:111b029010554336953c7cbdd3a29d8b |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:111b029010554336953c7cbdd3a29d8b2021-11-21T12:08:42ZPremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions10.1038/s42003-021-02826-32399-3642https://doaj.org/article/111b029010554336953c7cbdd3a29d8b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02826-3https://doaj.org/toc/2399-3642Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug resistance.Tingting SunYuting ChenYuhao WenZefeng ZhuMinghui LiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Tingting Sun Yuting Chen Yuhao Wen Zefeng Zhu Minghui Li PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
description |
Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug resistance. |
format |
article |
author |
Tingting Sun Yuting Chen Yuhao Wen Zefeng Zhu Minghui Li |
author_facet |
Tingting Sun Yuting Chen Yuhao Wen Zefeng Zhu Minghui Li |
author_sort |
Tingting Sun |
title |
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
title_short |
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
title_full |
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
title_fullStr |
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
title_full_unstemmed |
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
title_sort |
prempli: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/111b029010554336953c7cbdd3a29d8b |
work_keys_str_mv |
AT tingtingsun prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions AT yutingchen prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions AT yuhaowen prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions AT zefengzhu prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions AT minghuili prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions |
_version_ |
1718419168725827584 |