PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions

Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Tingting Sun, Yuting Chen, Yuhao Wen, Zefeng Zhu, Minghui Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/111b029010554336953c7cbdd3a29d8b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:111b029010554336953c7cbdd3a29d8b
record_format dspace
spelling oai:doaj.org-article:111b029010554336953c7cbdd3a29d8b2021-11-21T12:08:42ZPremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions10.1038/s42003-021-02826-32399-3642https://doaj.org/article/111b029010554336953c7cbdd3a29d8b2021-11-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02826-3https://doaj.org/toc/2399-3642Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug resistance.Tingting SunYuting ChenYuhao WenZefeng ZhuMinghui LiNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Tingting Sun
Yuting Chen
Yuhao Wen
Zefeng Zhu
Minghui Li
PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
description Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug resistance.
format article
author Tingting Sun
Yuting Chen
Yuhao Wen
Zefeng Zhu
Minghui Li
author_facet Tingting Sun
Yuting Chen
Yuhao Wen
Zefeng Zhu
Minghui Li
author_sort Tingting Sun
title PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
title_short PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
title_full PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
title_fullStr PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
title_full_unstemmed PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
title_sort prempli: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/111b029010554336953c7cbdd3a29d8b
work_keys_str_mv AT tingtingsun prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions
AT yutingchen prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions
AT yuhaowen prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions
AT zefengzhu prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions
AT minghuili prempliamachinelearningmodelforpredictingtheeffectsofmissensemutationsonproteinligandinteractions
_version_ 1718419168725827584