PremPLI: a machine learning model for predicting the effects of missense mutations on protein-ligand interactions
Sun et al. present PremPLI, a machine learning approach and web tool to predict how missense mutations in a drug’s target protein will affect the drug’s binding affinity. PremPLI can be applied to identify drug resistance mechanisms in cancer cells and microorganisms and develop drugs to combat drug...
Guardado en:
Autores principales: | Tingting Sun, Yuting Chen, Yuhao Wen, Zefeng Zhu, Minghui Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/111b029010554336953c7cbdd3a29d8b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ply-by-ply inline thermography inspection for thermoplastic automated tape layup
por: Neha Yadav, et al.
Publicado: (2021) -
The advanced ply placement process – an innovative direct 3D placement technology for plies and tapes
por: Marko Szcesny, et al.
Publicado: (2017) -
Male hypogonadism caused by a homozygous missense mutation of the LHB gene
por: Jie Chen, et al.
Publicado: (2021) -
MVP predicts the pathogenicity of missense variants by deep learning
por: Hongjian Qi, et al.
Publicado: (2021) -
Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties
por: Laura Fedele, et al.
Publicado: (2018)