Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke
Abstract NSI‐566 is a stable, primary adherent neural stem cell line derived from a single human fetal spinal cord and expanded epigenetically with no genetic modification. This cell line is being tested in clinical trials in the U.S. for treatment of amyotrophic lateral sclerosis and spinal cord in...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/112c941a54514a309226862fde02f5f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:112c941a54514a309226862fde02f5f4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:112c941a54514a309226862fde02f5f42021-11-30T19:15:36ZStable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke2157-65802157-656410.1002/sctm.18-0220https://doaj.org/article/112c941a54514a309226862fde02f5f42019-10-01T00:00:00Zhttps://doi.org/10.1002/sctm.18-0220https://doaj.org/toc/2157-6564https://doaj.org/toc/2157-6580Abstract NSI‐566 is a stable, primary adherent neural stem cell line derived from a single human fetal spinal cord and expanded epigenetically with no genetic modification. This cell line is being tested in clinical trials in the U.S. for treatment of amyotrophic lateral sclerosis and spinal cord injury. In a single‐site, phase I study, we evaluated the feasibility and safety of NSI‐566 transplantation for the treatment of hemiparesis due to chronic motor stroke and determined the maximum tolerated dose for future trials. Three cohorts (n = 3 per cohort) were transplanted with one‐time intracerebral injections of 1.2 × 107, 2.4 × 107, or 7.2 × 107 cells. Immunosuppression therapy with tacrolimus was maintained for 28 days. All subjects had sustained chronic motor strokes, verified by magnetic resonance imaging (MRI), initiated between 5 and 24 months prior to surgery with modified Rankin Scores [MRSs] of 2, 3, or 4 and Fugl‐Meyer Motor Scores of 55 or less. At the 12‐month visit, the mean Fugl‐Meyer Motor Score (FMMS, total score of 100) for the nine participants showed 16 points of improvement (p = .0078), the mean MRS showed 0.8 points of improvement (p = .031), and the mean National Institutes of Health Stroke Scale showed 3.1 points of improvement (p = .020). For six participants who were followed up for 24 months, these mean changes remained stable. The treatment was well tolerated at all doses. Longitudinal MRI studies showed evidence indicating cavity‐filling by new neural tissue formation in all nine patients. Although this was a small, one‐arm study of feasibility, the results are encouraging to warrant further studies. Stem Cells Translational Medicine 2019;8:999–1007Guangzhu ZhangYing LiJames L. ReussNan LiuCuiying WuJingpo LiShuangshuang XuFeng WangThomas G. HazelMiles CunninghamHongtian ZhangYiwu DaiPeng HongPing ZhangJianghong HeHuiru FengXiangdong LuJohn L. UlmerKarl K. JoheRuxiang XuWileyarticleMedicine (General)R5-920CytologyQH573-671ENStem Cells Translational Medicine, Vol 8, Iss 10, Pp 999-1007 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 Cytology QH573-671 |
spellingShingle |
Medicine (General) R5-920 Cytology QH573-671 Guangzhu Zhang Ying Li James L. Reuss Nan Liu Cuiying Wu Jingpo Li Shuangshuang Xu Feng Wang Thomas G. Hazel Miles Cunningham Hongtian Zhang Yiwu Dai Peng Hong Ping Zhang Jianghong He Huiru Feng Xiangdong Lu John L. Ulmer Karl K. Johe Ruxiang Xu Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
description |
Abstract NSI‐566 is a stable, primary adherent neural stem cell line derived from a single human fetal spinal cord and expanded epigenetically with no genetic modification. This cell line is being tested in clinical trials in the U.S. for treatment of amyotrophic lateral sclerosis and spinal cord injury. In a single‐site, phase I study, we evaluated the feasibility and safety of NSI‐566 transplantation for the treatment of hemiparesis due to chronic motor stroke and determined the maximum tolerated dose for future trials. Three cohorts (n = 3 per cohort) were transplanted with one‐time intracerebral injections of 1.2 × 107, 2.4 × 107, or 7.2 × 107 cells. Immunosuppression therapy with tacrolimus was maintained for 28 days. All subjects had sustained chronic motor strokes, verified by magnetic resonance imaging (MRI), initiated between 5 and 24 months prior to surgery with modified Rankin Scores [MRSs] of 2, 3, or 4 and Fugl‐Meyer Motor Scores of 55 or less. At the 12‐month visit, the mean Fugl‐Meyer Motor Score (FMMS, total score of 100) for the nine participants showed 16 points of improvement (p = .0078), the mean MRS showed 0.8 points of improvement (p = .031), and the mean National Institutes of Health Stroke Scale showed 3.1 points of improvement (p = .020). For six participants who were followed up for 24 months, these mean changes remained stable. The treatment was well tolerated at all doses. Longitudinal MRI studies showed evidence indicating cavity‐filling by new neural tissue formation in all nine patients. Although this was a small, one‐arm study of feasibility, the results are encouraging to warrant further studies. Stem Cells Translational Medicine 2019;8:999–1007 |
format |
article |
author |
Guangzhu Zhang Ying Li James L. Reuss Nan Liu Cuiying Wu Jingpo Li Shuangshuang Xu Feng Wang Thomas G. Hazel Miles Cunningham Hongtian Zhang Yiwu Dai Peng Hong Ping Zhang Jianghong He Huiru Feng Xiangdong Lu John L. Ulmer Karl K. Johe Ruxiang Xu |
author_facet |
Guangzhu Zhang Ying Li James L. Reuss Nan Liu Cuiying Wu Jingpo Li Shuangshuang Xu Feng Wang Thomas G. Hazel Miles Cunningham Hongtian Zhang Yiwu Dai Peng Hong Ping Zhang Jianghong He Huiru Feng Xiangdong Lu John L. Ulmer Karl K. Johe Ruxiang Xu |
author_sort |
Guangzhu Zhang |
title |
Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
title_short |
Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
title_full |
Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
title_fullStr |
Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
title_full_unstemmed |
Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke |
title_sort |
stable intracerebral transplantation of neural stem cells for the treatment of paralysis due to ischemic stroke |
publisher |
Wiley |
publishDate |
2019 |
url |
https://doaj.org/article/112c941a54514a309226862fde02f5f4 |
work_keys_str_mv |
AT guangzhuzhang stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT yingli stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT jameslreuss stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT nanliu stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT cuiyingwu stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT jingpoli stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT shuangshuangxu stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT fengwang stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT thomasghazel stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT milescunningham stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT hongtianzhang stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT yiwudai stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT penghong stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT pingzhang stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT jianghonghe stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT huirufeng stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT xiangdonglu stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT johnlulmer stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT karlkjohe stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke AT ruxiangxu stableintracerebraltransplantationofneuralstemcellsforthetreatmentofparalysisduetoischemicstroke |
_version_ |
1718406305323941888 |