Grey Wolf Resampling-Based Rao-Blackwellized Particle Filter for Mobile Robot Simultaneous Localization and Mapping
An artificial intelligent grey wolf optimizer (GWO)-assisted resampling scheme is applied to the Rao-Blackwellized particle filter (RBPF) in the simultaneous localization and mapping (SLAM). By doing this, we can make the diversity of the particles resampling and then obtain a better localization ac...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/112e8fb2dfc740b592ba6a39dc9d4d54 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | An artificial intelligent grey wolf optimizer (GWO)-assisted resampling scheme is applied to the Rao-Blackwellized particle filter (RBPF) in the simultaneous localization and mapping (SLAM). By doing this, we can make the diversity of the particles resampling and then obtain a better localization accuracy and fast convergence to realize indoor mobile robot SLAM. In addition, we propose an adaptive local data association (Range-SLAM) scheme to improve the computational efficiency for the algorithm of the nearest neighbor (NN) data association in the iteration of the RBPF prediction. Through the experiment and simulations, the proposed SLAM schemes have fast convergence, accuracy, and heuristics. Therefore, the improved RBPF and new data association schemes presented in this paper can provide a feasible method for the indoor mobile robot SLAM. |
---|