Presentation Attack Detection on Limited-Resource Devices Using Deep Neural Classifiers Trained on Consistent Spectrogram Fragments
The presented paper is concerned with detection of presentation attacks against unsupervised remote biometric speaker verification, using a well-known challenge–response scheme. We propose a novel approach to convolutional phoneme classifier training, which ensures high phoneme recognition accuracy...
Guardado en:
Autores principales: | Kacper Kubicki, Paweł Kapusta, Krzysztof Ślot |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/112f95b6c1a243e887b9bd989ee67fc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Data Collection, Modeling, and Classification for Gunshot and Gunshot-like Audio Events: A Case Study
por: Rajesh Baliram Singh, et al.
Publicado: (2021) -
Generalized Spectrograms and t -Wigner Transforms
por: PAOLO,BOGGIATTO, et al.
Publicado: (2010) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021) -
Multilingual Audio-Visual Smartphone Dataset and Evaluation
por: Hareesh Mandalapu, et al.
Publicado: (2021) -
Intelligent Techniques for Detecting Network Attacks: Review and Research Directions
por: Malak Aljabri, et al.
Publicado: (2021)