Development and validation of a discrimination model between primary PLA2R-negative membranous nephropathy and minimal change disease confirmed by renal biopsy
Abstract Membranous nephropathy (MN) and minimal change disease (MCD) are two common causes leading to nephrotic syndrome (NS). They have similar clinical features but different treatment strategies and prognoses. M-type phospholipase A2 receptor (PLA2R) is considered as a specific marker of membran...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1136edcd8ec746dab3179c01bccfa05c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Membranous nephropathy (MN) and minimal change disease (MCD) are two common causes leading to nephrotic syndrome (NS). They have similar clinical features but different treatment strategies and prognoses. M-type phospholipase A2 receptor (PLA2R) is considered as a specific marker of membranous nephropathy. However, its sensitivity is only about 70%. Therefore, there is a lack of effective and noninvasive tools to distinguish PLA2R-negative MN and MCD patients without renal biopsy. A total 949 patients who were pathologically diagnosed as idiopathic MN or MCD were enrolled in this study, including 805 idiopathic MN and 144 MCD. Based on the basic information and laboratory examination of 200 PLA2R-negative MN and 144 MCD, we used a univariate and multivariate logistic regression to select the relevant variables and develop a discrimination model. A novel model including age, albumin, urea, high density lipoprotein, C3 levels and red blood cell count was established for PLA2R-negative MN and MCD. The discrimination model has great differential capability (with an AUC of 0.904 in training group and an AUC of 0.886 in test group) and calibration capability. When testing in all 949 patients, our model also showed good discrimination ability for all idiopathic MN and MCD. |
---|