Reconstructing neuronal circuitry from parallel spike trains

Current techniques have enabled the simultaneous collection of spike train data from large numbers of neurons. Here, the authors report a method to infer the underlying neural circuit connectivity diagram based on a generalized linear model applied to spike cross-correlations between neurons.

Guardado en:
Detalles Bibliográficos
Autores principales: Ryota Kobayashi, Shuhei Kurita, Anno Kurth, Katsunori Kitano, Kenji Mizuseki, Markus Diesmann, Barry J. Richmond, Shigeru Shinomoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/1139b3b3aec44e7da4d4083a6c74e53b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1139b3b3aec44e7da4d4083a6c74e53b
record_format dspace
spelling oai:doaj.org-article:1139b3b3aec44e7da4d4083a6c74e53b2021-12-02T14:35:43ZReconstructing neuronal circuitry from parallel spike trains10.1038/s41467-019-12225-22041-1723https://doaj.org/article/1139b3b3aec44e7da4d4083a6c74e53b2019-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12225-2https://doaj.org/toc/2041-1723Current techniques have enabled the simultaneous collection of spike train data from large numbers of neurons. Here, the authors report a method to infer the underlying neural circuit connectivity diagram based on a generalized linear model applied to spike cross-correlations between neurons.Ryota KobayashiShuhei KuritaAnno KurthKatsunori KitanoKenji MizusekiMarkus DiesmannBarry J. RichmondShigeru ShinomotoNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-13 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ryota Kobayashi
Shuhei Kurita
Anno Kurth
Katsunori Kitano
Kenji Mizuseki
Markus Diesmann
Barry J. Richmond
Shigeru Shinomoto
Reconstructing neuronal circuitry from parallel spike trains
description Current techniques have enabled the simultaneous collection of spike train data from large numbers of neurons. Here, the authors report a method to infer the underlying neural circuit connectivity diagram based on a generalized linear model applied to spike cross-correlations between neurons.
format article
author Ryota Kobayashi
Shuhei Kurita
Anno Kurth
Katsunori Kitano
Kenji Mizuseki
Markus Diesmann
Barry J. Richmond
Shigeru Shinomoto
author_facet Ryota Kobayashi
Shuhei Kurita
Anno Kurth
Katsunori Kitano
Kenji Mizuseki
Markus Diesmann
Barry J. Richmond
Shigeru Shinomoto
author_sort Ryota Kobayashi
title Reconstructing neuronal circuitry from parallel spike trains
title_short Reconstructing neuronal circuitry from parallel spike trains
title_full Reconstructing neuronal circuitry from parallel spike trains
title_fullStr Reconstructing neuronal circuitry from parallel spike trains
title_full_unstemmed Reconstructing neuronal circuitry from parallel spike trains
title_sort reconstructing neuronal circuitry from parallel spike trains
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/1139b3b3aec44e7da4d4083a6c74e53b
work_keys_str_mv AT ryotakobayashi reconstructingneuronalcircuitryfromparallelspiketrains
AT shuheikurita reconstructingneuronalcircuitryfromparallelspiketrains
AT annokurth reconstructingneuronalcircuitryfromparallelspiketrains
AT katsunorikitano reconstructingneuronalcircuitryfromparallelspiketrains
AT kenjimizuseki reconstructingneuronalcircuitryfromparallelspiketrains
AT markusdiesmann reconstructingneuronalcircuitryfromparallelspiketrains
AT barryjrichmond reconstructingneuronalcircuitryfromparallelspiketrains
AT shigerushinomoto reconstructingneuronalcircuitryfromparallelspiketrains
_version_ 1718391054625931264