Pseudospectrum and Black Hole Quasinormal Mode Instability

We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymp...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: José Luis Jaramillo, Rodrigo Panosso Macedo, Lamis Al Sheikh
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/113c2317a1c64352bc01aeb604d57321
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:113c2317a1c64352bc01aeb604d57321
record_format dspace
spelling oai:doaj.org-article:113c2317a1c64352bc01aeb604d573212021-12-02T14:35:42ZPseudospectrum and Black Hole Quasinormal Mode Instability10.1103/PhysRevX.11.0310032160-3308https://doaj.org/article/113c2317a1c64352bc01aeb604d573212021-07-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.031003http://doi.org/10.1103/PhysRevX.11.031003https://doaj.org/toc/2160-3308We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)PRVDAQ0556-282110.1103/PhysRevD.53.4397] as an “infrared” effect; (ii) the instability of all overtones under small-scale (“ultraviolet”) perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)JMAPAQ0022-248810.1063/1.532698]. Methodologically, a compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in gravitational physics. After illustrating the approach with the Pöschl-Teller potential, we address the Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-frequency spacetime fluctuations at the Planck scale.José Luis JaramilloRodrigo Panosso MacedoLamis Al SheikhAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 3, p 031003 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
José Luis Jaramillo
Rodrigo Panosso Macedo
Lamis Al Sheikh
Pseudospectrum and Black Hole Quasinormal Mode Instability
description We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)PRVDAQ0556-282110.1103/PhysRevD.53.4397] as an “infrared” effect; (ii) the instability of all overtones under small-scale (“ultraviolet”) perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)JMAPAQ0022-248810.1063/1.532698]. Methodologically, a compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in gravitational physics. After illustrating the approach with the Pöschl-Teller potential, we address the Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-frequency spacetime fluctuations at the Planck scale.
format article
author José Luis Jaramillo
Rodrigo Panosso Macedo
Lamis Al Sheikh
author_facet José Luis Jaramillo
Rodrigo Panosso Macedo
Lamis Al Sheikh
author_sort José Luis Jaramillo
title Pseudospectrum and Black Hole Quasinormal Mode Instability
title_short Pseudospectrum and Black Hole Quasinormal Mode Instability
title_full Pseudospectrum and Black Hole Quasinormal Mode Instability
title_fullStr Pseudospectrum and Black Hole Quasinormal Mode Instability
title_full_unstemmed Pseudospectrum and Black Hole Quasinormal Mode Instability
title_sort pseudospectrum and black hole quasinormal mode instability
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/113c2317a1c64352bc01aeb604d57321
work_keys_str_mv AT joseluisjaramillo pseudospectrumandblackholequasinormalmodeinstability
AT rodrigopanossomacedo pseudospectrumandblackholequasinormalmodeinstability
AT lamisalsheikh pseudospectrumandblackholequasinormalmodeinstability
_version_ 1718391054820966400