Pseudospectrum and Black Hole Quasinormal Mode Instability
We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymp...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/113c2317a1c64352bc01aeb604d57321 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:113c2317a1c64352bc01aeb604d57321 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:113c2317a1c64352bc01aeb604d573212021-12-02T14:35:42ZPseudospectrum and Black Hole Quasinormal Mode Instability10.1103/PhysRevX.11.0310032160-3308https://doaj.org/article/113c2317a1c64352bc01aeb604d573212021-07-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.031003http://doi.org/10.1103/PhysRevX.11.031003https://doaj.org/toc/2160-3308We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)PRVDAQ0556-282110.1103/PhysRevD.53.4397] as an “infrared” effect; (ii) the instability of all overtones under small-scale (“ultraviolet”) perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)JMAPAQ0022-248810.1063/1.532698]. Methodologically, a compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in gravitational physics. After illustrating the approach with the Pöschl-Teller potential, we address the Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-frequency spacetime fluctuations at the Planck scale.José Luis JaramilloRodrigo Panosso MacedoLamis Al SheikhAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 3, p 031003 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 José Luis Jaramillo Rodrigo Panosso Macedo Lamis Al Sheikh Pseudospectrum and Black Hole Quasinormal Mode Instability |
description |
We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)PRVDAQ0556-282110.1103/PhysRevD.53.4397] as an “infrared” effect; (ii) the instability of all overtones under small-scale (“ultraviolet”) perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)JMAPAQ0022-248810.1063/1.532698]. Methodologically, a compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in gravitational physics. After illustrating the approach with the Pöschl-Teller potential, we address the Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-frequency spacetime fluctuations at the Planck scale. |
format |
article |
author |
José Luis Jaramillo Rodrigo Panosso Macedo Lamis Al Sheikh |
author_facet |
José Luis Jaramillo Rodrigo Panosso Macedo Lamis Al Sheikh |
author_sort |
José Luis Jaramillo |
title |
Pseudospectrum and Black Hole Quasinormal Mode Instability |
title_short |
Pseudospectrum and Black Hole Quasinormal Mode Instability |
title_full |
Pseudospectrum and Black Hole Quasinormal Mode Instability |
title_fullStr |
Pseudospectrum and Black Hole Quasinormal Mode Instability |
title_full_unstemmed |
Pseudospectrum and Black Hole Quasinormal Mode Instability |
title_sort |
pseudospectrum and black hole quasinormal mode instability |
publisher |
American Physical Society |
publishDate |
2021 |
url |
https://doaj.org/article/113c2317a1c64352bc01aeb604d57321 |
work_keys_str_mv |
AT joseluisjaramillo pseudospectrumandblackholequasinormalmodeinstability AT rodrigopanossomacedo pseudospectrumandblackholequasinormalmodeinstability AT lamisalsheikh pseudospectrumandblackholequasinormalmodeinstability |
_version_ |
1718391054820966400 |