On the Metric Dimension of Generalized Petersen Multigraphs

In this paper, we study the metric dimension of barycentric subdivision of M&#x00F6;bius ladders and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen multigraphs denoted by <inline-formula> <tex-math notation="LaTeX">$P(2n,n)$...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad Imran, Muhammad Kamran Siddiqui, Rishi Naeem
Formato: article
Lenguaje:EN
Publicado: IEEE 2018
Materias:
Acceso en línea:https://doaj.org/article/1147376d8c65451287f91897c0cb7fcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, we study the metric dimension of barycentric subdivision of M&#x00F6;bius ladders and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen multigraphs denoted by <inline-formula> <tex-math notation="LaTeX">$P(2n,n)$ </tex-math></inline-formula> have metric dimension 3 when <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is even and 4 otherwise. We also study the exchange property for resolving sets of barycentric subdivisions of M&#x00F6;bius ladders and generalized Petersen multigraphs and prove that the exchange property of the bases in a vector space does not hold for minimal resolving sets of these graphs.