On the Metric Dimension of Generalized Petersen Multigraphs

In this paper, we study the metric dimension of barycentric subdivision of M&#x00F6;bius ladders and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen multigraphs denoted by <inline-formula> <tex-math notation="LaTeX">$P(2n,n)$...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Muhammad Imran, Muhammad Kamran Siddiqui, Rishi Naeem
Formato: article
Lenguaje:EN
Publicado: IEEE 2018
Materias:
Acceso en línea:https://doaj.org/article/1147376d8c65451287f91897c0cb7fcd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1147376d8c65451287f91897c0cb7fcd
record_format dspace
spelling oai:doaj.org-article:1147376d8c65451287f91897c0cb7fcd2021-11-19T00:02:41ZOn the Metric Dimension of Generalized Petersen Multigraphs2169-353610.1109/ACCESS.2018.2883556https://doaj.org/article/1147376d8c65451287f91897c0cb7fcd2018-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/8554062/https://doaj.org/toc/2169-3536In this paper, we study the metric dimension of barycentric subdivision of M&#x00F6;bius ladders and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen multigraphs denoted by <inline-formula> <tex-math notation="LaTeX">$P(2n,n)$ </tex-math></inline-formula> have metric dimension 3 when <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is even and 4 otherwise. We also study the exchange property for resolving sets of barycentric subdivisions of M&#x00F6;bius ladders and generalized Petersen multigraphs and prove that the exchange property of the bases in a vector space does not hold for minimal resolving sets of these graphs.Muhammad ImranMuhammad Kamran SiddiquiRishi NaeemIEEEarticleMetric dimensionbasisresolving setbarycentric subdivisionMöbius laddersgeneralized Petersen graphsElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 6, Pp 74328-74338 (2018)
institution DOAJ
collection DOAJ
language EN
topic Metric dimension
basis
resolving set
barycentric subdivision
Möbius ladders
generalized Petersen graphs
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Metric dimension
basis
resolving set
barycentric subdivision
Möbius ladders
generalized Petersen graphs
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Muhammad Imran
Muhammad Kamran Siddiqui
Rishi Naeem
On the Metric Dimension of Generalized Petersen Multigraphs
description In this paper, we study the metric dimension of barycentric subdivision of M&#x00F6;bius ladders and the metric dimension of generalized Petersen multigraphs. We prove that the generalized Petersen multigraphs denoted by <inline-formula> <tex-math notation="LaTeX">$P(2n,n)$ </tex-math></inline-formula> have metric dimension 3 when <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> is even and 4 otherwise. We also study the exchange property for resolving sets of barycentric subdivisions of M&#x00F6;bius ladders and generalized Petersen multigraphs and prove that the exchange property of the bases in a vector space does not hold for minimal resolving sets of these graphs.
format article
author Muhammad Imran
Muhammad Kamran Siddiqui
Rishi Naeem
author_facet Muhammad Imran
Muhammad Kamran Siddiqui
Rishi Naeem
author_sort Muhammad Imran
title On the Metric Dimension of Generalized Petersen Multigraphs
title_short On the Metric Dimension of Generalized Petersen Multigraphs
title_full On the Metric Dimension of Generalized Petersen Multigraphs
title_fullStr On the Metric Dimension of Generalized Petersen Multigraphs
title_full_unstemmed On the Metric Dimension of Generalized Petersen Multigraphs
title_sort on the metric dimension of generalized petersen multigraphs
publisher IEEE
publishDate 2018
url https://doaj.org/article/1147376d8c65451287f91897c0cb7fcd
work_keys_str_mv AT muhammadimran onthemetricdimensionofgeneralizedpetersenmultigraphs
AT muhammadkamransiddiqui onthemetricdimensionofgeneralizedpetersenmultigraphs
AT rishinaeem onthemetricdimensionofgeneralizedpetersenmultigraphs
_version_ 1718420651291705344