Deep Convolutional Neural Networks Detect Tumor Genotype from Pathological Tissue Images in Gastrointestinal Stromal Tumors
Gastrointestinal stromal tumors (GIST) are common mesenchymal tumors, and their effective treatment depends upon the mutational subtype of the <i>KIT/PDGFRA</i> genes. We established deep convolutional neural network (DCNN) models to rapidly predict drug-sensitive mutation subtypes from...
Guardado en:
Autores principales: | Cher-Wei Liang, Pei-Wei Fang, Hsuan-Ying Huang, Chung-Ming Lo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/114e70598c6a4b06a1bc72873254d566 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Avapritinib: a new tyrosine kinase inhibitor for treatment of advanced gastrointestinal stromal tumors. The literature review and clinical case
por: Daria A. Filonenko, et al.
Publicado: (2021) -
Gastrointestinal Stromal Tumors (GISTs): Single Center Experience Observed in a Small Series of Cases
por: Manterola,Carlos, et al.
Publicado: (2016) -
Outstanding Response to Sorafenib in a Patient with Metastatic Gastrointestinal Stromal Tumour
por: Charlotte Brinch, et al.
Publicado: (2021) -
Discovery of novel potential KIT inhibitors for the treatment of gastrointestinal stromal tumor
por: Jiang Lili, et al.
Publicado: (2021) -
Spatiotemporal Analysis of Haze in Beijing Based on the Multi-Convolution Model
por: Lirong Yin, et al.
Publicado: (2021)