Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities

The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communitie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ali R. Zomorrodi, Daniel Segrè
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d66
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1159c42bdb6d4755a2bef7c89b9d8d66
record_format dspace
spelling oai:doaj.org-article:1159c42bdb6d4755a2bef7c89b9d8d662021-12-02T17:06:29ZGenome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities10.1038/s41467-017-01407-52041-1723https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d662017-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01407-5https://doaj.org/toc/2041-1723The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communities.Ali R. ZomorrodiDaniel SegrèNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ali R. Zomorrodi
Daniel Segrè
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
description The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communities.
format article
author Ali R. Zomorrodi
Daniel Segrè
author_facet Ali R. Zomorrodi
Daniel Segrè
author_sort Ali R. Zomorrodi
title Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
title_short Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
title_full Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
title_fullStr Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
title_full_unstemmed Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
title_sort genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d66
work_keys_str_mv AT alirzomorrodi genomedrivenevolutionarygametheoryhelpsunderstandtheriseofmetabolicinterdependenciesinmicrobialcommunities
AT danielsegre genomedrivenevolutionarygametheoryhelpsunderstandtheriseofmetabolicinterdependenciesinmicrobialcommunities
_version_ 1718381597963583488