Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities
The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communitie...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d66 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1159c42bdb6d4755a2bef7c89b9d8d66 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1159c42bdb6d4755a2bef7c89b9d8d662021-12-02T17:06:29ZGenome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities10.1038/s41467-017-01407-52041-1723https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d662017-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-017-01407-5https://doaj.org/toc/2041-1723The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communities.Ali R. ZomorrodiDaniel SegrèNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-12 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Ali R. Zomorrodi Daniel Segrè Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
description |
The rise of metabolic interdependencies among microbes is still poorly understood. Here, taking the underlying biochemical networks into consideration, Zomorrodi and Segrè integrate genome-scale metabolic models with evolutionary game theory to study the rise of cross-feeding in microbial communities. |
format |
article |
author |
Ali R. Zomorrodi Daniel Segrè |
author_facet |
Ali R. Zomorrodi Daniel Segrè |
author_sort |
Ali R. Zomorrodi |
title |
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
title_short |
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
title_full |
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
title_fullStr |
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
title_full_unstemmed |
Genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
title_sort |
genome-driven evolutionary game theory helps understand the rise of metabolic interdependencies in microbial communities |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/1159c42bdb6d4755a2bef7c89b9d8d66 |
work_keys_str_mv |
AT alirzomorrodi genomedrivenevolutionarygametheoryhelpsunderstandtheriseofmetabolicinterdependenciesinmicrobialcommunities AT danielsegre genomedrivenevolutionarygametheoryhelpsunderstandtheriseofmetabolicinterdependenciesinmicrobialcommunities |
_version_ |
1718381597963583488 |