Data valuation for medical imaging using Shapley value and application to a large-scale chest X-ray dataset
Abstract The reliability of machine learning models can be compromised when trained on low quality data. Many large-scale medical imaging datasets contain low quality labels extracted from sources such as medical reports. Moreover, images within a dataset may have heterogeneous quality due to artifa...
Guardado en:
Autores principales: | Siyi Tang, Amirata Ghorbani, Rikiya Yamashita, Sameer Rehman, Jared A. Dunnmon, James Zou, Daniel L. Rubin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/115fcccb74764f0687b45ec863822f0b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ensemble Deep Learning for the Detection of COVID-19 in Unbalanced Chest X-ray Dataset
por: Khin Yadanar Win, et al.
Publicado: (2021) -
Creation and validation of a chest X-ray dataset with eye-tracking and report dictation for AI development
por: Alexandros Karargyris, et al.
Publicado: (2021) -
Deep learning for visualization and novelty detection in large X-ray diffraction datasets
por: Lars Banko, et al.
Publicado: (2021) -
CLINICAL SYMPTOMS AND CHEST X-RAY FINDINGS FOR EVALUATION OF CHEST X-RAY IN MANAGEMENT AND PREDICTION OF CLINICAL OUTCOME OF CONFIRM CASES OF COVID-19
por: Khawaja Muhammad Baqir Hassan, et al.
Publicado: (2020) -
CLINICAL SYMPTOMS AND CHEST X-RAY FINDINGS FOR EVALUATION OF CHEST X-RAY IN MANAGEMENT AND PREDICTION OF CLINICAL OUTCOME OF CONFIRM CASES OF COVID-19
por: Khawaja Muhammad Baqir Hassan, et al.
Publicado: (2020)