Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study

Yongtao Zhou,1 Junwu Zhao,1,2 Yaqin Hou,3 Yusheng Su,3 Piu Chan,1 Yuping Wang11The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China; 2The Nuclear Medicine Department, Xuanwu Hospital of Capital Medical University, Beijing,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zhou Y, Zhao J, Hou Y, Su Y, Chan P, Wang Y
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/11639341416542c4a02c6ab5b887c673
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:11639341416542c4a02c6ab5b887c673
record_format dspace
spelling oai:doaj.org-article:11639341416542c4a02c6ab5b887c6732021-12-02T03:27:12ZDopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study1178-2021https://doaj.org/article/11639341416542c4a02c6ab5b887c6732019-07-01T00:00:00Zhttps://www.dovepress.com/dopaminergic-pathway-and-primary-visual-cortex-are-involved-in-the-fre-peer-reviewed-article-NDThttps://doaj.org/toc/1178-2021Yongtao Zhou,1 Junwu Zhao,1,2 Yaqin Hou,3 Yusheng Su,3 Piu Chan,1 Yuping Wang11The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China; 2The Nuclear Medicine Department, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China; 3The Department of Neurology, Weihai Municipal Hospital, Shandong, People’s Republic of ChinaBackground: Freezing of gait (FOG) could be partly alleviated by dopaminergic drugs but the mechanism still needs to be elucidated. The purpose of this study is to explore the mechanisms of FOG by vesicular monoamine transporter VMAT2 distribution with the 18,F-AV133 tracer and 18-fludeoxyglucose positron emission tomography–computed tomography (18,F-FDG PET-CT).Methods: Clinical material and PET-CT data were collected from 20 patients with FOG and 147 patients without FOG from November 1, 2017 to October 31, 2018. Brain scans of all participants were acquired over an approximately 20-min period, 120 min after injection of approximately 250 MBq 18,F-AV133. The mean uptake ratios of different regions were identified by NeuroQ software of 18,F-FDG PET-CT. Data analysis included variance, chi-square analysis, covariance analysis, and logistic regression.Results: Our data showed that patients with FOG were provided with greater doses of dopaminergic drugs (p<0.05). The frequency of FOG was 11.98% and increased as Parkinson’s disease progressed. FOG was more common in the elderly and strongly associated with the duration. Cognitive impairments were obvious, assessed by Mini-Mental State Examination and Montreal Cognitive Assessment (p<0.05). The VMAT2 distribution with 18,F-AV133 was decreased significantly in the caudate nucleus and lentiform nucleus while the metabolism of these areas was elevated, determined by 18,F-FDG PET-CT (p<0.05). The metabolism of the primary visual cortex decreased obviously in patients with FOG compared with those without FOG (p<0.05).Conclusion: FOG mainly occurred in the advanced stage, and was strongly associated with the duration and larger dose of dopaminergic drugs. The dopamine level of the nigrostriatal system decreased significantly and the uptake ratios of the primary visual cortex dropped obviously in the FOG group compared with the non-FOG group. Our study suggests that both the dopaminergic pathway and the primary visual cortex are involved in the pathogenesis of FOG.Keywords: freezing of gait, Parkinson’s disease, clinical characters, VMAT2, positron emission tomography–computed tomographyZhou YZhao JHou YSu YChan PWang YDove Medical PressarticleFreezing of gaitParkinson diseaseClinical charactersVMAT2PET-CTNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571Neurology. Diseases of the nervous systemRC346-429ENNeuropsychiatric Disease and Treatment, Vol Volume 15, Pp 1905-1914 (2019)
institution DOAJ
collection DOAJ
language EN
topic Freezing of gait
Parkinson disease
Clinical characters
VMAT2
PET-CT
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
spellingShingle Freezing of gait
Parkinson disease
Clinical characters
VMAT2
PET-CT
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Neurology. Diseases of the nervous system
RC346-429
Zhou Y
Zhao J
Hou Y
Su Y
Chan P
Wang Y
Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
description Yongtao Zhou,1 Junwu Zhao,1,2 Yaqin Hou,3 Yusheng Su,3 Piu Chan,1 Yuping Wang11The Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China; 2The Nuclear Medicine Department, Xuanwu Hospital of Capital Medical University, Beijing, People’s Republic of China; 3The Department of Neurology, Weihai Municipal Hospital, Shandong, People’s Republic of ChinaBackground: Freezing of gait (FOG) could be partly alleviated by dopaminergic drugs but the mechanism still needs to be elucidated. The purpose of this study is to explore the mechanisms of FOG by vesicular monoamine transporter VMAT2 distribution with the 18,F-AV133 tracer and 18-fludeoxyglucose positron emission tomography–computed tomography (18,F-FDG PET-CT).Methods: Clinical material and PET-CT data were collected from 20 patients with FOG and 147 patients without FOG from November 1, 2017 to October 31, 2018. Brain scans of all participants were acquired over an approximately 20-min period, 120 min after injection of approximately 250 MBq 18,F-AV133. The mean uptake ratios of different regions were identified by NeuroQ software of 18,F-FDG PET-CT. Data analysis included variance, chi-square analysis, covariance analysis, and logistic regression.Results: Our data showed that patients with FOG were provided with greater doses of dopaminergic drugs (p<0.05). The frequency of FOG was 11.98% and increased as Parkinson’s disease progressed. FOG was more common in the elderly and strongly associated with the duration. Cognitive impairments were obvious, assessed by Mini-Mental State Examination and Montreal Cognitive Assessment (p<0.05). The VMAT2 distribution with 18,F-AV133 was decreased significantly in the caudate nucleus and lentiform nucleus while the metabolism of these areas was elevated, determined by 18,F-FDG PET-CT (p<0.05). The metabolism of the primary visual cortex decreased obviously in patients with FOG compared with those without FOG (p<0.05).Conclusion: FOG mainly occurred in the advanced stage, and was strongly associated with the duration and larger dose of dopaminergic drugs. The dopamine level of the nigrostriatal system decreased significantly and the uptake ratios of the primary visual cortex dropped obviously in the FOG group compared with the non-FOG group. Our study suggests that both the dopaminergic pathway and the primary visual cortex are involved in the pathogenesis of FOG.Keywords: freezing of gait, Parkinson’s disease, clinical characters, VMAT2, positron emission tomography–computed tomography
format article
author Zhou Y
Zhao J
Hou Y
Su Y
Chan P
Wang Y
author_facet Zhou Y
Zhao J
Hou Y
Su Y
Chan P
Wang Y
author_sort Zhou Y
title Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
title_short Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
title_full Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
title_fullStr Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
title_full_unstemmed Dopaminergic pathway and primary visual cortex are involved in the freezing of gait in Parkinson’s disease: a PET-CT study
title_sort dopaminergic pathway and primary visual cortex are involved in the freezing of gait in parkinson’s disease: a pet-ct study
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/11639341416542c4a02c6ab5b887c673
work_keys_str_mv AT zhouy dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
AT zhaoj dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
AT houy dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
AT suy dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
AT chanp dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
AT wangy dopaminergicpathwayandprimaryvisualcortexareinvolvedinthefreezingofgaitinparkinsonrsquosdiseaseapetctstudy
_version_ 1718401713990270976