MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.

The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human d...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Larry N Singh, Brian Ennis, Bryn Loneragan, Noah L Tsao, M Isabel G Lopez Sanchez, Jianping Li, Patrick Acheampong, Oanh Tran, Ian A Trounce, Yuankun Zhu, Prasanth Potluri, Regeneron Genetics Center, Beverly S Emanuel, Daniel J Rader, Zoltan Arany, Scott M Damrauer, Adam C Resnick, Stewart A Anderson, Douglas C Wallace
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/117d8a4df8de4858b795a6db63fbde98
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:117d8a4df8de4858b795a6db63fbde98
record_format dspace
spelling oai:doaj.org-article:117d8a4df8de4858b795a6db63fbde982021-12-02T19:58:12ZMitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.1553-734X1553-735810.1371/journal.pcbi.1009594https://doaj.org/article/117d8a4df8de4858b795a6db63fbde982021-11-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009594https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA sequences from NGS. MitoScape adopts a novel departure from other algorithms by using machine learning to model the unique characteristics of mitochondrial genetics. We also employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a comprehensive comparison of the most common tools for obtaining mtDNA variants from NGS and showed that MitoScape had superior performance to compared tools in every statistically category we compared, including false positives and false negatives. By applying MitoScape to common disease examples, we illustrate how MitoScape facilitates important heteroplasmy-disease association discoveries by expanding upon a reported association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoScape will be instrumental in diagnosing disease in the context of personalized medicine and clinical diagnostics.Larry N SinghBrian EnnisBryn LoneraganNoah L TsaoM Isabel G Lopez SanchezJianping LiPatrick AcheampongOanh TranIan A TrounceYuankun ZhuPrasanth PotluriRegeneron Genetics CenterBeverly S EmanuelDaniel J RaderZoltan AranyScott M DamrauerAdam C ResnickStewart A AndersonDouglas C WallacePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 11, p e1009594 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Larry N Singh
Brian Ennis
Bryn Loneragan
Noah L Tsao
M Isabel G Lopez Sanchez
Jianping Li
Patrick Acheampong
Oanh Tran
Ian A Trounce
Yuankun Zhu
Prasanth Potluri
Regeneron Genetics Center
Beverly S Emanuel
Daniel J Rader
Zoltan Arany
Scott M Damrauer
Adam C Resnick
Stewart A Anderson
Douglas C Wallace
MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
description The growing number of next-generation sequencing (NGS) data presents a unique opportunity to study the combined impact of mitochondrial and nuclear-encoded genetic variation in complex disease. Mitochondrial DNA variants and in particular, heteroplasmic variants, are critical for determining human disease severity. While there are approaches for obtaining mitochondrial DNA variants from NGS data, these software do not account for the unique characteristics of mitochondrial genetics and can be inaccurate even for homoplasmic variants. We introduce MitoScape, a novel, big-data, software for extracting mitochondrial DNA sequences from NGS. MitoScape adopts a novel departure from other algorithms by using machine learning to model the unique characteristics of mitochondrial genetics. We also employ a novel approach of using rho-zero (mitochondrial DNA-depleted) data to model nuclear-encoded mitochondrial sequences. We showed that MitoScape produces accurate heteroplasmy estimates using gold-standard mitochondrial DNA data. We provide a comprehensive comparison of the most common tools for obtaining mtDNA variants from NGS and showed that MitoScape had superior performance to compared tools in every statistically category we compared, including false positives and false negatives. By applying MitoScape to common disease examples, we illustrate how MitoScape facilitates important heteroplasmy-disease association discoveries by expanding upon a reported association between hypertrophic cardiomyopathy and mitochondrial haplogroup T in men (adjusted p-value = 0.003). The improved accuracy of mitochondrial DNA variants produced by MitoScape will be instrumental in diagnosing disease in the context of personalized medicine and clinical diagnostics.
format article
author Larry N Singh
Brian Ennis
Bryn Loneragan
Noah L Tsao
M Isabel G Lopez Sanchez
Jianping Li
Patrick Acheampong
Oanh Tran
Ian A Trounce
Yuankun Zhu
Prasanth Potluri
Regeneron Genetics Center
Beverly S Emanuel
Daniel J Rader
Zoltan Arany
Scott M Damrauer
Adam C Resnick
Stewart A Anderson
Douglas C Wallace
author_facet Larry N Singh
Brian Ennis
Bryn Loneragan
Noah L Tsao
M Isabel G Lopez Sanchez
Jianping Li
Patrick Acheampong
Oanh Tran
Ian A Trounce
Yuankun Zhu
Prasanth Potluri
Regeneron Genetics Center
Beverly S Emanuel
Daniel J Rader
Zoltan Arany
Scott M Damrauer
Adam C Resnick
Stewart A Anderson
Douglas C Wallace
author_sort Larry N Singh
title MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
title_short MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
title_full MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
title_fullStr MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
title_full_unstemmed MitoScape: A big-data, machine-learning platform for obtaining mitochondrial DNA from next-generation sequencing data.
title_sort mitoscape: a big-data, machine-learning platform for obtaining mitochondrial dna from next-generation sequencing data.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/117d8a4df8de4858b795a6db63fbde98
work_keys_str_mv AT larrynsingh mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT brianennis mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT brynloneragan mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT noahltsao mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT misabelglopezsanchez mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT jianpingli mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT patrickacheampong mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT oanhtran mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT ianatrounce mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT yuankunzhu mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT prasanthpotluri mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT regenerongeneticscenter mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT beverlysemanuel mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT danieljrader mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT zoltanarany mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT scottmdamrauer mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT adamcresnick mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT stewartaanderson mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
AT douglascwallace mitoscapeabigdatamachinelearningplatformforobtainingmitochondrialdnafromnextgenerationsequencingdata
_version_ 1718375764456374272