Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification
The research carried out so far for phage-antibiotic synergy (PAS) differs as regards the technique of modifying the double-layer agar (DLA) method to show the PAS effect on Petri plates, which may contribute to non-uniform research results. Therefore, there is a need to unify the method to effectiv...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/11863e1600064993acb0443155f7f503 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:11863e1600064993acb0443155f7f503 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:11863e1600064993acb0443155f7f5032021-11-25T16:22:28ZDouble-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification10.3390/antibiotics101113062079-6382https://doaj.org/article/11863e1600064993acb0443155f7f5032021-10-01T00:00:00Zhttps://www.mdpi.com/2079-6382/10/11/1306https://doaj.org/toc/2079-6382The research carried out so far for phage-antibiotic synergy (PAS) differs as regards the technique of modifying the double-layer agar (DLA) method to show the PAS effect on Petri plates, which may contribute to non-uniform research results. Therefore, there is a need to unify the method to effectively detect the PAS effect, at its most basic in vitro test. In this study, bacteriophage T4<sub>5</sub> and 43 antibiotics belonging to different antibiotic classes were used. Seven different DLA method modifications were tested, in terms of antibiotic addition placement and presence or absence of the base agar. The overall number of phage plaques per plate mainly depended on the antibiotic used. Differences in plaque quantity depended on the type of the DLA method modification. The largest total number of plaques was obtained by the addition of an antibiotic to a bottom agar with the presence of a top agar. This indicates that even though an antibiotic could manifest the PAS effect by a standard disk method, it would be worth examining if the effect is equally satisfactory when applying antibiotics directly into the agar, with regards to using the same bacteriophage and bacterial host.Xymena StachurskaMarta RoszakJoanna JabłońskaMałgorzata MizielińskaPaweł NawrotekMDPI AGarticleantibioticsbacteriophagephage-antibiotic synergy<i>Escherichia coli</i>double-layer agar methodTherapeutics. PharmacologyRM1-950ENAntibiotics, Vol 10, Iss 1306, p 1306 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
antibiotics bacteriophage phage-antibiotic synergy <i>Escherichia coli</i> double-layer agar method Therapeutics. Pharmacology RM1-950 |
spellingShingle |
antibiotics bacteriophage phage-antibiotic synergy <i>Escherichia coli</i> double-layer agar method Therapeutics. Pharmacology RM1-950 Xymena Stachurska Marta Roszak Joanna Jabłońska Małgorzata Mizielińska Paweł Nawrotek Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
description |
The research carried out so far for phage-antibiotic synergy (PAS) differs as regards the technique of modifying the double-layer agar (DLA) method to show the PAS effect on Petri plates, which may contribute to non-uniform research results. Therefore, there is a need to unify the method to effectively detect the PAS effect, at its most basic in vitro test. In this study, bacteriophage T4<sub>5</sub> and 43 antibiotics belonging to different antibiotic classes were used. Seven different DLA method modifications were tested, in terms of antibiotic addition placement and presence or absence of the base agar. The overall number of phage plaques per plate mainly depended on the antibiotic used. Differences in plaque quantity depended on the type of the DLA method modification. The largest total number of plaques was obtained by the addition of an antibiotic to a bottom agar with the presence of a top agar. This indicates that even though an antibiotic could manifest the PAS effect by a standard disk method, it would be worth examining if the effect is equally satisfactory when applying antibiotics directly into the agar, with regards to using the same bacteriophage and bacterial host. |
format |
article |
author |
Xymena Stachurska Marta Roszak Joanna Jabłońska Małgorzata Mizielińska Paweł Nawrotek |
author_facet |
Xymena Stachurska Marta Roszak Joanna Jabłońska Małgorzata Mizielińska Paweł Nawrotek |
author_sort |
Xymena Stachurska |
title |
Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
title_short |
Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
title_full |
Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
title_fullStr |
Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
title_full_unstemmed |
Double-Layer Agar (DLA) Modifications for the First Step of the Phage-Antibiotic Synergy (PAS) Identification |
title_sort |
double-layer agar (dla) modifications for the first step of the phage-antibiotic synergy (pas) identification |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/11863e1600064993acb0443155f7f503 |
work_keys_str_mv |
AT xymenastachurska doublelayeragardlamodificationsforthefirststepofthephageantibioticsynergypasidentification AT martaroszak doublelayeragardlamodificationsforthefirststepofthephageantibioticsynergypasidentification AT joannajabłonska doublelayeragardlamodificationsforthefirststepofthephageantibioticsynergypasidentification AT małgorzatamizielinska doublelayeragardlamodificationsforthefirststepofthephageantibioticsynergypasidentification AT pawełnawrotek doublelayeragardlamodificationsforthefirststepofthephageantibioticsynergypasidentification |
_version_ |
1718413181774200832 |