Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm
Abstract In the process of Wavelet Analysis, only the low-frequency signals are re-decomposed, and the high-frequency signals are no longer decomposed, resulting in a decrease in frequency resolution with increasing frequency. Therefore, in this paper, firstly, Wavelet Packet Decomposition is used f...
Enregistré dans:
Auteurs principaux: | Maohua Xiao, Wei Zhang, Kai Wen, Yue Zhu, Yilidaer Yiliyasi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
SpringerOpen
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/11a1eb1c7ca14b978561f57af6242e3e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor
par: S. F Mousavi, et autres
Publié: (2016) -
Fatigue Life Prediction of Rolling Bearings Based on Modified SWT Mean Stress Correction
par: Aodi Yu, et autres
Publié: (2021) -
Greentelligence: Smart Manufacturing for a Greener Future
par: Xingyu Li, et autres
Publié: (2021) -
FPGA Realization of Two-DimensionalWavelet and Wavelet Packet Transform
par: Mohammed N. Al-Turfi, et autres
Publié: (2005) -
FPGA Realization of Two-Dimensional Wavelet and Wavelet Packet Transform
par: Walid A. Mahmoud, et autres
Publié: (2017)