An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study
Abstract The rampant spread of COVID-19, an infectious disease caused by SARS-CoV-2, all over the world has led to over millions of deaths, and devastated the social, financial and political entities around the world. Without an existing effective medical therapy, vaccines are urgently needed to avo...
Enregistré dans:
Auteurs principaux: | Zikun Yang, Paul Bogdan, Shahin Nazarian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/11a53413f913468ab9b7cb55f95e4071 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach
par: Shafi Mahmud, et autres
Publié: (2021) -
In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19
par: Hüseyin Can, et autres
Publié: (2020) -
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
par: Isabelle Q. Phan, et autres
Publié: (2021) -
In-silico design of envelope based multi-epitope vaccine candidate against Kyasanur forest disease virus
par: Sathishkumar Arumugam, et autres
Publié: (2021) -
Highly conserved, non-human-like, and cross-reactive SARS-CoV-2 T cell epitopes for COVID-19 vaccine design and validation
par: Lauren M. Meyers, et autres
Publié: (2021)