Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications
Abstract Owing to its exceptional properties at high temperature, graphite is used in several applications such as structural material and fuel block in high temperature nuclear reactors. Air ingress is one of the serious safety concerns in these reactors. Oxidation of graphite leading to increased...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/11c4e84966ae4d94bf630df3e6ddfe3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:11c4e84966ae4d94bf630df3e6ddfe3f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:11c4e84966ae4d94bf630df3e6ddfe3f2021-12-02T19:04:11ZEmission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications10.1038/s41598-020-71424-w2045-2322https://doaj.org/article/11c4e84966ae4d94bf630df3e6ddfe3f2020-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-71424-whttps://doaj.org/toc/2045-2322Abstract Owing to its exceptional properties at high temperature, graphite is used in several applications such as structural material and fuel block in high temperature nuclear reactors. Air ingress is one of the serious safety concerns in these reactors. Oxidation of graphite leading to increased porosity affects its mechanical strength and may lead to core collapse resulting in a severe accident. During such a scenario, generation of graphite particles could be the main hazard. Once generated, these particles often in fine and ultrafine sizes, may carry radioactivity to large distances and/or for long times. These particles owing to their higher surface to volume ratio possess an additional inhalation hazard. Ultrafine particles have the potential to enter into respiratory tract and cause damage to body organs. Coating of graphite components is preferred to reduce the oxidation induced damages at high temperatures. In the present work, effect of alumina (Al2O3) coating on the emission characteristics of particles from graphite under high temperature conditions has been investigated. Bare and Al2O3 coated graphite specimens were heated within a closed chamber at varying temperatures during these experiments. Temporal evolution of concentrations of gases (CO and CO2) and particles were measured. The results reveal that Al2O3 coating on the graphite delayed the oxidation behavior and the structure of graphite remained largely intact at high temperatures. A significant reduction in aerosol formation and CO emission was also noticed for the coated specimens.S. K. YadavP. ShuklaManish JoshiArshad KhanA. KaushikAjit Kumar JhaB. K. SapraR. S. SinghNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q S. K. Yadav P. Shukla Manish Joshi Arshad Khan A. Kaushik Ajit Kumar Jha B. K. Sapra R. S. Singh Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
description |
Abstract Owing to its exceptional properties at high temperature, graphite is used in several applications such as structural material and fuel block in high temperature nuclear reactors. Air ingress is one of the serious safety concerns in these reactors. Oxidation of graphite leading to increased porosity affects its mechanical strength and may lead to core collapse resulting in a severe accident. During such a scenario, generation of graphite particles could be the main hazard. Once generated, these particles often in fine and ultrafine sizes, may carry radioactivity to large distances and/or for long times. These particles owing to their higher surface to volume ratio possess an additional inhalation hazard. Ultrafine particles have the potential to enter into respiratory tract and cause damage to body organs. Coating of graphite components is preferred to reduce the oxidation induced damages at high temperatures. In the present work, effect of alumina (Al2O3) coating on the emission characteristics of particles from graphite under high temperature conditions has been investigated. Bare and Al2O3 coated graphite specimens were heated within a closed chamber at varying temperatures during these experiments. Temporal evolution of concentrations of gases (CO and CO2) and particles were measured. The results reveal that Al2O3 coating on the graphite delayed the oxidation behavior and the structure of graphite remained largely intact at high temperatures. A significant reduction in aerosol formation and CO emission was also noticed for the coated specimens. |
format |
article |
author |
S. K. Yadav P. Shukla Manish Joshi Arshad Khan A. Kaushik Ajit Kumar Jha B. K. Sapra R. S. Singh |
author_facet |
S. K. Yadav P. Shukla Manish Joshi Arshad Khan A. Kaushik Ajit Kumar Jha B. K. Sapra R. S. Singh |
author_sort |
S. K. Yadav |
title |
Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
title_short |
Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
title_full |
Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
title_fullStr |
Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
title_full_unstemmed |
Emission characteristics of ultrafine particles from bare and Al2O3 coated graphite for high temperature applications |
title_sort |
emission characteristics of ultrafine particles from bare and al2o3 coated graphite for high temperature applications |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/11c4e84966ae4d94bf630df3e6ddfe3f |
work_keys_str_mv |
AT skyadav emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT pshukla emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT manishjoshi emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT arshadkhan emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT akaushik emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT ajitkumarjha emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT bksapra emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications AT rssingh emissioncharacteristicsofultrafineparticlesfrombareandal2o3coatedgraphiteforhightemperatureapplications |
_version_ |
1718377191930068992 |